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Collision Risk Modeling

 Collision Risk Models (CRM) can be used to demonstrate that
proposed procedures meet airspace safety standards.

e Is collision risk less than 1E-97

Proximity volume:
Cylinder with radius r, height h




 Historic flight tracks
* Limited number of flight tracks to evaluate 1E-9 event

* May not be relevant for evaluating new procedures, new
technology, different airports, etc.

e Simulated flight tracks
 Computer model may not capture nuances of real operations

 Computationally prohibitive to generate enough tracks to
obtain reasonable confidence interval for 1E-9 event

* Synthetic tracks

* Potential to generate realistic new (never been seen) tracks,
based on historic data (Krauth et al. 2023)

Krauth, Timothé, Adrien Lafage, Jérome Morio, Xavier Olive, and Manuel Waltert. 2023. Deep generative modelling of aircraft
trajectories in terminal maneuvering areas. Machine Learning with Applications, 11, 10046.




Generation of Synthetic Flight Tracks

* Objective: Can Al/ML methods be used to generate new “realistic”
synthetic flight trajectories for use in collision risk models?

* Al/ML methods: Variational autoencoder, Gaussian mixture models,
generative adversarial network, ...

* How to measure “realism”
* Tracks conform to laws of physics and aircraft performance limits
* Adherence to flight procedures
» Statistical comparison to real flight trajectories

[1]1 T. Krauth, A. Lafage, J. Morio, X. Olive, and M. Waltert, “Deep generative modelling of aircraft trajectories in terminal maneuvering areas,” Machine Learning with Applications, vol. 11, p.

100446, 2023. <
[2] S. Jung and M. J. Kochenderfer, “Learning terminal airspace traffic models from flight tracks and procedures,” in 2019 IEEE/AIAA 38th Digital Avionics Systems Conference (DASC). IEE P
2019, pp. 1-8. ‘ .

[3] P. Lukes and P. Kulmon, “Generating realistic aircraft trajectories using generative adversarial networks,” in 2023 24th International Radar Symposium (IRS). IEEE, 2023, pp. 1-10.
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Variational Autoencoder

Bottleneck compresses data and stores

Input layer .
P y mean and variance

Output layer

Output = synthetic
trajectory

Input = seed trajectory
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Can generate multiple
synthetic tracks from single
seed track

Kingma, Diederik P., and Max Welling. "An introduction to variational autoencoders." Foundations and Trends® in Machine Learning 12.4 (2019): 307—3‘ | .



Atlanta Airport

Runway 26R
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Data Set: Arrivals to ATL, Runway 26R

» 2,356 flight tracks 150000 -
e January to April, 2020

* Track points include _
longitude, latitude, £ 100000
altitude, and timestamp.

* Flight tracks have varying
numbers of data points,

ranging from 167 to 1,050 50000 -

pomts. Runway 26R
e Converted to Universal \

Transverse Mercator (UTM)

projection
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Methodology to Train VAE

1. Data preparation
A. Interpolate to achieve common number of points for each track (400)
B. Calculate velocity (ground speed) at each track point
C. Normalize data

2. Train variational autoencoder

* |Input/output layers are 1,600 x 1 vector
* Encoder: 1600, 256, 128, 64, bottleneck (30)
e Decoder: bottleneck (30), 64, 128, 256, 1600

3. Generate synthetic flight tracks




VAE Training Details

* Four linear layers
 Encoder: 1600, 256, 128, 64, bottleneck
 Decoder: bottleneck, 64, 128, 256, 1600

» Bottleneck size: 30

e RelLU activation function
* Learning rate: 0.001

e Batch size: 16

e Epochs: 1,500

* Scheduler is used to reduce learning rate if the loss value does not decrease
for 40 consecutive iterations

* Loss = reconstruction loss + KL coef. x KL divergence loss
* Training time is around 10 min
* System: CPU: AMD EPYC 7543 32-Core, GPU: NVIDIA A100-SXM4-10GB

4N\
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VAE Can Reproduce Historic Tracks
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Generating Multiple Tracks from One Seed Track
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Question

* Cannot generate full range of historic tracks from one seed track

* How many seed tracks are needed to reproduce the statistical
distributions of historic tracks?
* Provides a measure how many “new” tracks can be realistically generated
from existing data set

N seed tracks




Metrics to Evaluating Synthetic Tracks

Average cross-track distance

* Along-track distance (ATD)
* Average cross-track distance (ACTD)

e onm and 9nm from the runway
threshold:
* Lateral dispersion (LD)
* Vertical dispersion (VD)
* Velocity dispersion (SD)

Dispersion metrics at 6nm and 9nm

a?.!**
»

* Goal: Synthetic tracks should match %/
(in distribution) historic tracks for all
metrics

AN




Methodology

* Train variational autoencoder with a given KL coefficient

* Select nseed tracks (e.g.,n=1, 2,4, 19, ..., 1178, 23506)
» Sort historic flight tracks according to track length
* Choose seed tracks evenly distributed among sorted historic tracks

* From each seed track, generate (2,356 / n) synthetic tracks

* |l.e., 2,356 total synthetic tracks

 Example: 19 seed tracks, each track used to generate 124 synthetic tracks
(2,356 synthetic tracks)

e Calculate metrics (ATD, ACTD, LD, VD, and SD) for synthetic tracks
 Compare metric distributions, synthetic versus historical

4N\



Track Length: Synthetic versus Historic
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How Do Distributions Compare Between
Synthetic and Historic Tracks

e Total Variation Distance (TVD): Absolute area between the
two distributions (historic and synthetic)

synthetic
S

historic

e




Example: Average Cross-Track Distance

* Total variation distance (TVD in percent), historic vs. synthetic
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Aggregate Results Combining All Metrics

Average total
variational distance,
for all metrics,
between synthetic and
historic tracks
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Summary and Next Steps

* Trained VAE on flight track data from ATL (2,536 tracks)

 Evaluated synthetic tracks on a range of metrics, comparing synthetic and historic
tracks, varied number of seed tracks and KL coefficient

* Synthetic flight tracks matched distributions of historic flight tracks using 1/20 of
tracks as seed tracks

Future work

* Use alternate data sets (different arrival patterns, airports; off-nominal events), do
results still hold?

 Evaluate risk-based metrics associated with synthetic tracks (requires generating
pairs of synthetic tracks)

e Evaluate physics-based metrics

* Use case: Train VAE on existing procedure (many historic flights), tune VAE using data
from a new procedure (small number of tracks from flight simulator)

4N\
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Functions for Collision Risk Modeling
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Multi-seed Track Generation
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Synthetic Track Data
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