

# How is Johns Hopkins University Applied Physics Laboratory Applying Digital Engineering?

with Tom Alberi, Johns Hopkins University Applied Physics Laboratory

| - |       |        |        | 111    |    |        |     |
|---|-------|--------|--------|--------|----|--------|-----|
|   | Today | 'c co  | ccion  | VAZILL | ha | record | 00  |
|   | TOUAY | יש אכי | 221011 | VVIII  | טכ | IECOIG | eu. |

- An archive of today's talk will be available at: <a href="https://www.sercuarc.org/serc-talks/">www.sercuarc.org/serc-talks/</a> as well as on the SERC YouTube channel.
- ☐ Use the Q&A box to queue up questions, reserving the chat box for comments, and questions will be answered during the last 5 -10 minutes of the session.
- ☐ If you are connected via the dial -in information only, please email questions or comments to <u>SERCtalks@stevens.edu</u>.
- Any issues? Use the chat feature for any technical difficulties or other comments, or email <u>SERCtalks@stevens.edu</u>.

CELEBRATING SYSTEMS ENGINEERING DIGITALIZATION

# "Celebrating Systems Engineering Digitalization" Series Moderator

# **Tom McDermott**

Chief Technology Officer, Systems Engineering Research Center



November 1, 2023 SERC Talks

# How is Johns Hopkins University Applied Physics Laboratory Applying Digital Engineering?

# Tom Alberi

Program Manager– Sentinel Weapon System Engineering, Johns Hopkins University (JHU) Applied Physics Laboratory (APL)



November 1, 2023 SERC Talks

# **Agenda**

Due to presentation time constraints, only a select few of APL's DE efforts are highlighted

- APL Overview
- DE at APL: Examples, Challenges, & Recommendations



- **Data Integration**
- Strategic Integrated Development Environment
- **Architecture Profiles**
- **Cameo Plugins**
- Whole System Decision Model
- **Advanced Visualization**
- Digital Engineering System Modeling
- Acquisition for Digital Engineering
- **Cultural Transformation**
- Strategic Deterrence Digital Engineering Conference

Topics organized by DoD DE strategic goals that are most applicable, but may cover multiple goals

# **APL Overview**



#### What are we?

- · Research division of Johns Hopkins University
- University Affiliated Research Center



#### Who are we?

- Technically skilled and operationally oriented
- · Objective and independent



#### Who are our sponsors?

- · Department of Defense
- NASA
- · Department of Homeland Security
- · Intelligence Community



#### What is our purpose?

· Critical contributions to critical challenges

Laboratory Statistics: ~8,500 staff members

# Some Examples of DE in Action Across APL

#### Air Base Air Defense Systems

- Challenges: Requirements development, candidate system evaluation
- Tasking: Model combinations of systems, identify key system attributes, perform trade and feasibility studies

## Nuclear Command and Control Communications (NC3)

- Challenges: Critical components identification, resource prioritization
- Tasking: Construct mission dependency models, develop graph-based analytics capability

#### **Battle Management Kill Chain (BMKC)**

- · Challenges: End-to-end kill chain modeling
- Tasking: Model integration, Monte Carlo simulations

#### **Next Generation Technologies**

- Challenges: Interoperability, system certification, training
- Tasking: Digital Twin requirements development

Several efforts highlighted in the following slides



#### One-of-a-Kind Spacecraft Production

- Challenges: Product lifecycle management, work and parts planning, fabrication work order support
- Tasking: Engineering and manufacturing workflow automation, advanced visualization (e.g. AR)

#### **Agile Combat Employment (ACE) Missions**

- Challenges: Ontology development, staff skillset
- Tasking: Model development and integration, performance assessment, decision analysis

## <u>Hypersonic Attack Cruise Missile (HACM) Digital</u> <u>Acquisition</u>

- Challenges: Air force rapid development of air launched hypersonic weapon
- Tasking: Pioneering digital engineering for AF weapons

#### Next Generation Attack Submarine SSN(X)

- · Challenges: DE strategy, cultural transition
- Tasking: Training, roadmap development and execution planning, ship concept modeling development

## Intercontinental and Submarine Launched Ballistic Missiles (ICBMs, SLBMs)

- Challenges: DE strategy, decision analysis, complete lifecycle support, system certification
- Tasking: Requirements/architecture modeling, data integration, capability prototyping, cultural adoption

APL

Distribution Statement A 30 October 2023 6



- **Data Integration**
- Strategic Integrated **Development Environment**

## **Data Integration**

Supporting Navy SSP and Air Force Sentinel efforts to integrate data across many tools and databases

### Strategic Systems Programs (SSP)

- Prescribed formal ontology to drive structure of data
- Best for early or pre-development



#### **Sentinel**

 Ad-hoc ontology development, based on existing data structure

Best when data source structure is difficult to change



# JHU/APL FY22 Cross-Lab DE Initiative

Strategic Integrated Development Environment (StrIDE)



Distribution Statement A



- **Architecture Profiles**
- Cameo Plugins

## **Sentinel Architecture Profiles**

- APL is supporting the development and use of custom architecture profiles for Sentinel
  - Integrate domain-specific information in architecture models to facilitate early evaluation and analysis of contractor design to drive real-time feedback and revision
  - Support unification of nuclear surety, cybersecurity, and safety certifications through risk-based concepts



## **Semantically-Driven Profiles for Navy SSP**

- Using the prescribed ontology to guide the development of Cameo profiles to enforce adherence to the ontology
- Also considering using the ontology to drive data structures in other tools (DOORS, PLM, etc.)



## Object Recognition for Compliance, Usability, and Sustainment

- ORCUS is an APL-developed Cameo plug-in that provides an interactive method to amend model compliance violations
- Ensures model compliance and enables faster development for both new and experienced Cameo users
- Utilizes user-defined meta-models to establish validation patterns for evaluation
  - Meta-model agnostic no code changes needed to use ORCUS with new models
  - Minimal rework to make existing metamodels readable using pre-defined stereotypes



Available for Download



### Key:

- (1) Element Highlighting
- (2) Element Pop-up Menu
- (3) Scroll-bar Markings
- (4) Violations Table



https://www.jhuapl.edu/TechTransfer/Technologies/Licensing



## Information Security Marking Plugin

For Consistently Applying Information Security Markings in Cameo Models

#### MARKINGS SHOWN BELOW ARE FOR DEMONSTRATION PURPOSES ONLY. NO CLASSIFIED DATA IS SHOWN IN THIS SLIDE.

















Selected as the information security marking solution for Cameo by Navy Modeling & Sim Office

https://www.jhuapl.edu/TechTransfer/Technologies/Licensing



Available for Download



# Whole System Decision Model (WSDM)



High quality data-driven decision making requires decision-driven data-generation, analysis, & synthesis.



The Whole System Decision Model (WSDM) incorporates best practices to facilitate decision-driven data-generation, analysis, and synthesis.

| Best Practice         | Description                                                                                                                                                                                           |  |
|-----------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Establish Frame       | View Engineered System Through Holism / Synthesis Lens. Define SOI Boundary & Planning Horizon.                                                                                                       |  |
| Express Value         | Lue Express SOI's Stakeholder Value as a Solution Neutral Function in Hierarchical Form.                                                                                                              |  |
| Define Measures       | Define unambiguous measures of effectiveness for each leaf node of the hierarchy.                                                                                                                     |  |
| Generate Alternatives | Generate large number of system level alternatives (elements of form).                                                                                                                                |  |
| Map Relationships     | Create a System Value Influence Diagram to clearly map independent variables (alternatives) to dependent variables (MOEs) through appropriate cost, schedule, and performance models.                 |  |
| Deploy Models         | Deploy SMEs and their models to assess each alternative against MOPs and MOEs within their area of expertise.                                                                                         |  |
| Synthesize Analysis   | Put all the data in one place. Use exploratory data-analysis techniques to explore tradespace. Show the data – don't rely on summary statistics. Include sensitivity analysis.                        |  |
| Converge Over Time    | Treat decision as a tournament of ideas implemented over time, build intuition about the trade-space, winnow out of dominated alternatives at each round, increase fidelity of filters at each round. |  |

## **Advanced Visualization**

Making Data Actionable





# Sentinel Digital Engineering System Modeling

- APL is leading the development of Sentinel's Digital Engineering System Reference Architecture (DESRA) and Digital Engineering System Architecture Model (DESAM)
  - Both are used to systematically define requirements for the DES
  - DESRA Program-agnostic DES functional/logical architecture
  - DESAM Sentinel-specific DES functional/logical/physical architecture





- Acquisition for Digital Engineering
- **Cultural Transformation**
- Strategic Deterrence Digital **Engineering Conference**

# **Acquisition for Digital Engineering**

- Navy SSP
  - SSP stood up their Acquisition IPT specifically to address changes in acquisition strategy and plans
  - RFP/SOW example/template language that accommodate DE concepts
  - CDRL/DID guidance for DE deliverables
  - Data rights and IP guidance
- Air Force Survivable Airborne Operation Center (SAOC)
  - Modeling federated data structure with traceability to contract requirements
  - Mapping between contract requirements and data model

- Select a CDRL to decompose. (e.g Acceptance Test Plan)
- Read the corresponding DID and update active hyperlink from Defense Standardization Program (DSP)



- - Create folder with DI-Document Number as the Name
  - Put the DID element into the folder
- Create a Block Definition Diagram (BDD)
  - Use new diagram named for the CDRL of interest
  - Put CDRL and DID on the diagram
  - Verify that relationship exists between DID and CDRL
- Decompose CDRL into sections of content from the DID



- Align Physical entity with Logical Data Model (LDM)
  - Drag LDM element onto the BDD
  - Connect the physical element to the LDM element
- If necessary develop a proposed "New Logical Data Entity" for LDM

#### **Logical Data Model**



Including all CDRL\DID requirements in SYSML ensures traceability throughout the model.

#### Extension = Navigable Ontology



Along with support for the digital thread on this program, this LDM process can be used to develop a navigable ontology for related efforts

# **Beyond the Technical – Cultural Transformation**







# **StratDDEC 2023 Highlights**



# **Challenges**

#### Technical

- **Data Management** Four V's (volume, variety, velocity, veracity), compression, sharing, controls, commonality, integration, utilization
- **Digitalization and Integration** Unique identification, metadata, creation, curation, governance, digital threading, ASOTs
- Standardization and Interoperability Language standards, taxonomies, ontologies, APIs, vendor lock
- Security Access (all data across all platforms), classification and compartmentalization (UNCLASS to SAP/SCI), needto-know, protecting the ASOTs
- Modeling and Analysis Reproducibility, replicability, generalizability, interpretability, transparency, backwards compatibility, CM, VV&A
- People and Processes Digital acquisition, agile systems engineering, knowledge capture, documentation, training

#### **Programmatic**

- **Leadership** Roles and responsibilities
- Sharing and Collaboration Willingness of enterprise partners (government, industry, labs) to share information and collaborate. need-to-know
- Infrastructure Governance of information technologies, creation of DE environments, data and model accessibility, protection
- Classification Ability to cross numerous security boundaries
- Workforce Expertise, availability, hiring, training
- Culture Adoption of digital approach and tools at all levels; ability to identify what you are intending to achieve with the digital approach - one size does not fit all
- Ownership In the end, who owns the capability and how will it be sustained?
- **Cost** Development, maintenance, metrics and quantification, ROI

## Recommendations

- Leverage common approaches and lessons learned Don't reinvent the wheel!
- Get programs to prepare for DE early While it provides tremendous benefit long term, it's a big lift up front
- Don't abandon engineering fundamentals While the tools and methods may change, good engineering practices are still necessary
- While "vendor lock" is a risk, don't let it preclude you from using COTS solutions – Many COTS products provide more capability than could ever be custom built or maintained/sustained on typical budgets
- Emphasize training and cultural adoption You can't do DE without it
- Evolve traditional acquisition practices and processes to support DE – Don't fall for the "if it isn't broken, don't fix it" fallacy
- Many more than can be listed here







- Tuesday, November 14:
- <u>11<sup>th</sup> SERC Doctoral Student Forum</u> (11 5:15)
  - <u>Dr. Barry Boehm Award for Doctoral Student Research</u> Excellence
- Annual Reception: "Cheers to 15 Years!" (5:30-7:30)
- Wednesday, November 15: (8:30 5:30)
  - 15<sup>th</sup> SERC Research Review
    - 3 tracks of SERC research highlights
- Registration Open





Please check back on the <u>SERC website</u> for today's recording and future SERC Talks information.







www.sercuarc.org/contact-us/