

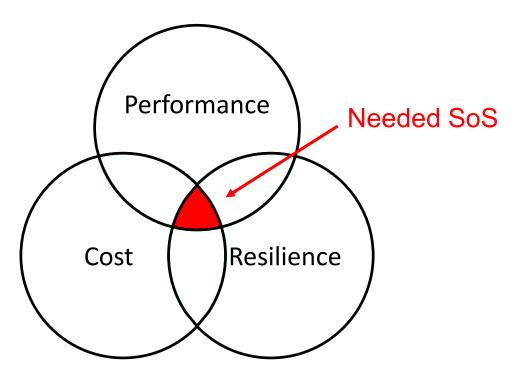
Ecology-Inspired Technique for Resilient Engineered System of Systems Design

Sponsor: OUSD(R&E) | CCDC

By

Mr. Abheek Chatterjee, Dr. Astrid Layton and Dr. Richard Malak Texas A&M University 11th Annual SERC Sponsor Research Review November 19, 2019 FHI 360 CONFERENCE CENTER 1825 Connecticut Avenue NW, 8th Floor Washington, DC 20009

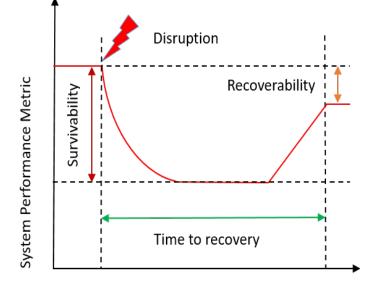
www.sercuarc.org



Research Task

Technique to *analyze/predict* trade-offs between **performance**, **cost**, & **resilience** of System of Systems

- Early in the design process
- Without need for detailed simulations/disruption models



Design for Resilience is an iterative process^[1]

Difficult to quantify early in project

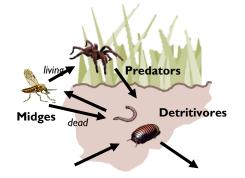
Tend to rely on basic design rules

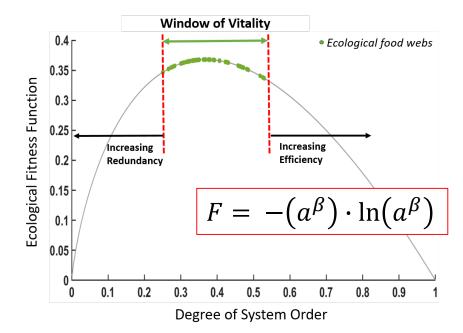
 physical redundancy, functional redundancy, localized capacity, etc.^[2]

Time

Desired: quantitative guidelines for engineering of resilient SoS

^{1.} Uday, P. and K. Marais (2015). "Designing Resilient Systems-of-Systems: A Survey of Metrics, Methods, and Challenges." Systems Engineering 18(5): 491-510.

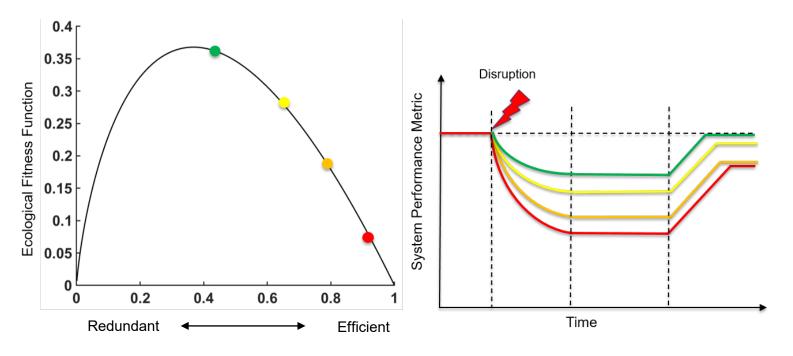

^{2.} Jackson, S. and T. L. J. Ferris (2013). "Resilience principles for engineered systems." 16(2): 152-164.


Ecosystems = *Biological SoS*

- **Resilient** to disturbances
- Unique balance of efficiency & redundancy

Observed *"Window of Vitality"*^[3,4]

- Degree of System Order (*a*)^[3]
- Quantifies balance of efficient & redundant network pathways


3. Ulanowicz, R. E., et al. (2009). "Quantifying sustainability: Resilience, efficiency and the return of information theory." Ecological Complexity 6(1): 27-36

4. Fath, B. D. (2015). "Quantifying economic and ecological sustainability." <u>Ocean & Coastal Management</u> 108: 13-19.

Research Questions

1. Do SoS architectures with bio-inspired balances of efficient & redundant interactions improve *performance, affordability, and response to disruptions*?

2. What factors influence a favorable "window of vitality" for an engineered SoS?

- Food Web Digraph: ENA ecosystem model
- Flow matrix **T**: flow magnitude information
- Organizational Development^[5] (AMI):

$$AMI = \sum_{i=0}^{N+2} \sum_{j=0}^{N+2} \frac{T_{ij}}{TST_p} \log_2 \left[\frac{T_{ij} \cdot TST_p}{T_i \cdot T_{.j}} \right]$$

Upper Limit of Organizational Development^[5] (*H*):

$$H = -\sum_{i=0}^{N+2} \sum_{j=0}^{N+2} \frac{T_{ij}}{TST_p} \log_2 \left[\frac{T_{ij}}{TST_p} \right]$$

Degree of System Order^[3] (a):

a = AMI/H

Ecological Fitness Function (F):

$$F = -(a^{\beta}) \cdot \ln(a^{\beta})$$

Predators Detritivores Midges $t_{3(N+1)}$ t₁₂ t₃₂ t₃₁ t_{13} Output 3 Input 0 0 0 t_{03} 2

0

0 0

0

0

3

Ulanowicz, R. E., et al. (2009). "Quantifying sustainability: Resilience, efficiency and the return of information theory." Ecological Complexity 6(1): 27-36 3.

Ulanowicz, R. E. (1986). Growth and Development: Ecosystems Phenomenology, iUniverse. 5.

November 19, 2019

Dissipation

0

0

0

0

0

0

0

0

INITIAL ANALYSIS OF TWENTY FEASIBLE ARCHITECTURES FOR A NOTIONAL HOSTILES SURVEILLANCE SoS

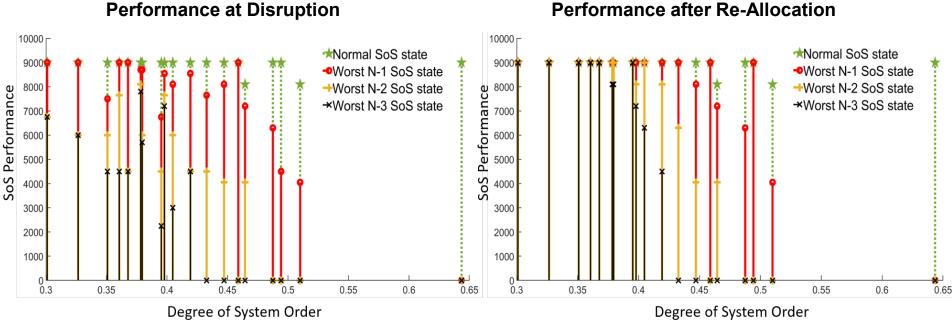
 Surveillance area capacity, surveillance quality, exploitation capability, and operational cost characteristics selected based on literature^[6]

System	Surveillance quality	Max. surveillance area (sq. miles)	Exploitation capability	Operational Cost (10 ³ \$/hour-unit)
JSTAR	1	>9000	1 JSTAR	18
UAV	0.9	2250	-	2
Military Satellite	0.7	>9000	-	1
Theater	-	-	2 UAVs	10
CONUS	-	-	Unlimited	-

- **SoS Performance**: function surveillance and surveillance quality
- SoS Operational Cost: sum of operating costs of sub-systems
- Validation: Standard N-X Contingency Analysis
 - Investigate disruptions response
 - Loss of one, two, and three sub-systems (N-1, N-2, and N-3 contingencies)

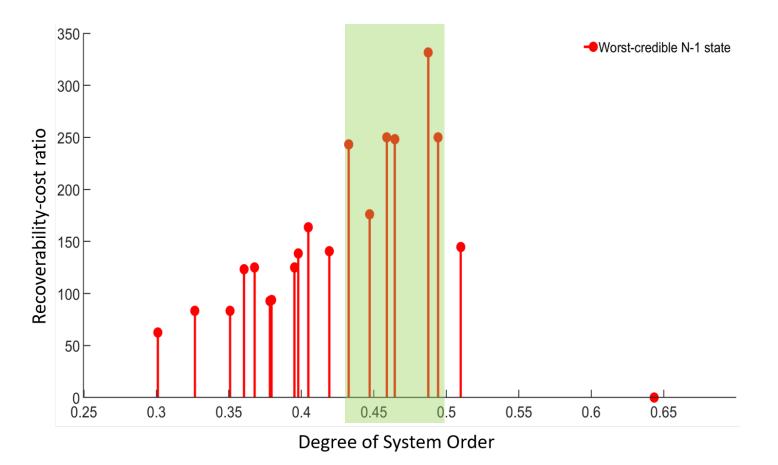
^{6.} Dagli, C. H., et al. (2013). "An advanced computational approach to system of systems analysis & architecting using agent-based behavioral model."

- SoS architectures modeled as flow network digraphs
 - —Participating systems = nodes
 - —Operational data = flows
- Fitness Function (F) & Degree of System Order (a) calculated using the flow matrices (T)



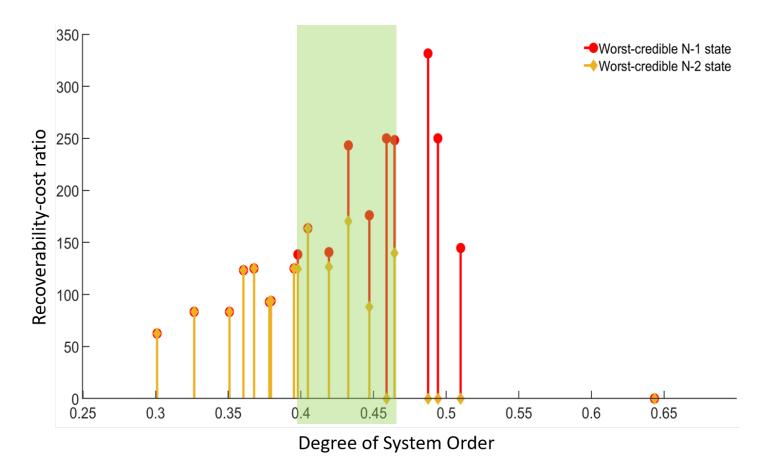
ILLUSTRATIVE EXAMPLE: 1/20 SoS Scenarios Investigated

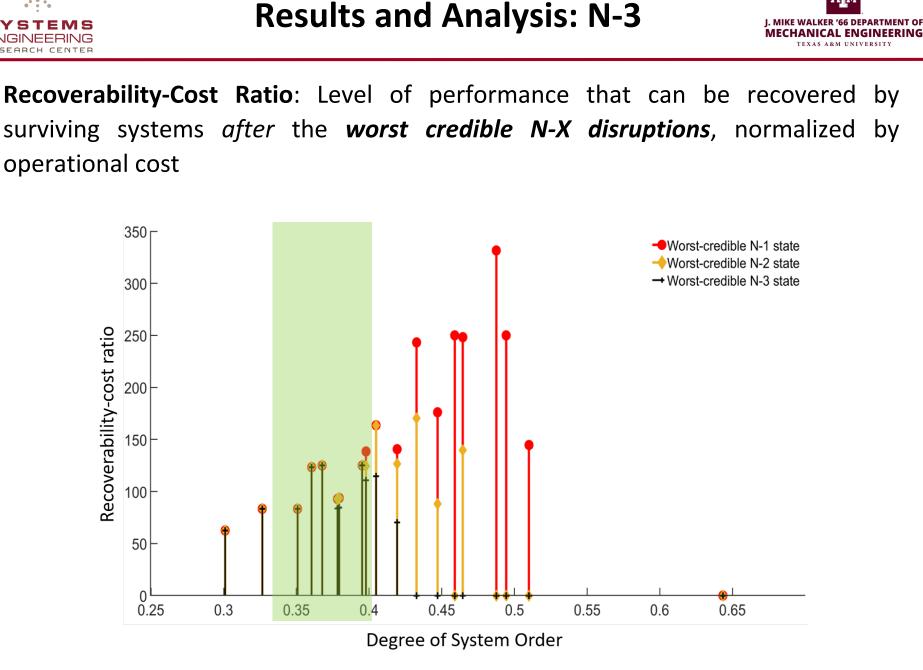
- Redundancy improves disruption response up to a point for each threat level
- N-1 Scenarios: closer to a = 1 (efficient interactions)
- More Severe N-2 and N-3 scenarios: moves closer to a = 0 (redundant interactions)



Performance at Disruption

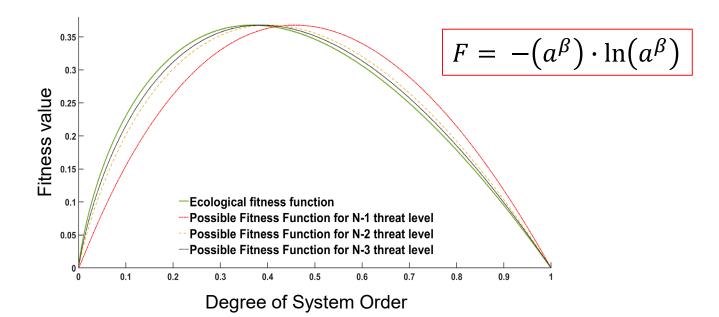
Recoverability-Cost Ratio: Level of performance that can be recovered by surviving systems *after* the *worst credible N-X disruptions*, normalized by operational cost





Results and Analysis: N-2

Recoverability-Cost Ratio: Level of performance that can be recovered by surviving systems *after* the *worst credible N-X disruptions*, normalized by operational cost



- Recoverability-Cost Ratio *improves* with redundancy, peaks, and then worsens (*excessive redundancy*)
 - Similar behavior to ecosystems
- SoS fitness (F) estimated based on best recoverability-cost ratios design for each contingency analysis
 - Increasing threat levels cause fitness trend to move towards the ecological fitness function

- Additional SoS case studies
 - —More complex scenarios
 - -More complex disruption models
- Investigate effects of excessive redundancy on SoS, such as organization interoperability
- Investigate mathematical framework for SoS trends and trades
 - -SoS fitness function: peak location trends
 - -Explanatory understanding of redundancy-efficiency trades on SoS fitness
- Guidelines for quantitative modeling SoS and evaluation in early stages of mission engineering