

Architecting Digital Twins for Model-Centric Engineering: Semantic and Machine Learning Approach

Sponsor: OUSD(R&E) | CCDC

By

Dr. Mark Austin (PI), Maria Coelho, Dr. Mark Blackburn 11th Annual SERC Sponsor Research Review November 19, 2019 FHI 360 CONFERENCE CENTER 1825 Connecticut Avenue NW, 8th Floor Washington, DC 20009

www.sercuarc.org

Basic Idea: Explore design of digital twin architectures that support AI and ML formalisms working side-by-side as a team, providing complementary and supportive roles in collection of data, identification of events, and automated decision making.

Research Challenge: How to design digital twin elements and their interactions so that collectively they can support a wide variety of systems engineering methods and processes?

Incubator Goals: Understand the range of possibilities for which machine learning of large-scale graphs and their attributes support activities in model-centric engineering.

Step 1: Data-Ontology-Rule Footing (Work at UMD / NIST / SERC in 2017).

Example: Detection and Diagnostic Analysis of Faults in HVAC Equipment.

Multi-Domain Semantic Modeling

Step 2: Work at UMD / Building Energy Group at NIST / NCI, 2018-2019

Research Question: How can semantic modeling + machine learning / data mining work together as a team?

SSRR 2019

Step 3: Focus on Machine Learning of Graphs and Model-Centric Engineering.

Output: reconstruction of system graph

- What types of graphs (e.g., undirected, directed, weighted, multi-graph) are easy for the ML to learn?
- How well do these techniques work with graph topology and attributes that are dynamic?
- What can the ML do that is outside the capability of semantic modeling? And vice-versa?
- How can the ML improve the semantic modeling? And vice-versa?
- How to design the red arrows connecting layers 1, 2 and 3?
- How to represent and reason with uncertainties?
- How does the difficulty of these challenges increase with graph size?
- How to map AI-ML capability to state-of-the-art engineering views?

