

Game-theoretic Risk Assessment for Distributed Systems (GRADS)

Sponsor: OUSD(R&E) | CCDC

By

Dr. Paul T. Grogan 11th Annual SERC Sponsor Research Review November 19, 2019 FHI 360 CONFERENCE CENTER 1825 Connecticut Avenue NW, 8th Floor Washington, DC 20009

www.sercuarc.org

- Future complex engineered systems will have more distributed architectures with decentralized decision-making among multiple independent design actors
- Two types of risk in collaborative projects:
 - -Systemic risk: cost, schedule, and technology uncertainty
 - -Collaborative risk: conflict and coordination failures

• How to assess collaborative risk in distributed systems?

- -Tradeoff between expected upside and possible downside
- -Collaborative risk linked to decision stability, not uncertainty
- Evaluate an objective risk metric based on economic theory of Selten's (1995) Weighted Average Log Measure (WALM) of risk dominance

- Two hunters face a decision to either hunt stag or hare:
- Successful stag hunt yields high reward but requires collaboration
- Unsuccessful stag hunt yields low or no reward (!)
- Hare hunt yields moderate reward and can be pursued independently

Stag hunt by Gaston Phoebus (Bibliotheque Nationale de France)

Connect to web application:

- <u>http://hunt.code-lab.org</u>
- —Choose unique username (best if your real name!)
- -Pass code is: atilla
- Three rounds of ~10 hunts:
 - -Choose either Stag or Hare
 - —High score demonstrates your Darwinian fitness!

FYI: source code available at: https://github.com/ptgrogan/hunt

The Hu	nt		× +		—		×	
↔ → e	6	i hunt.cod	le-lab.org	•••	⊠ ଘ	× >>	≡	
Log in								
	User	name						
	Pass	code						
		Si	ign in					
Log The	Hunt	:					paul: ()
Paire	d with							
<rar< td=""><td>ndom F</td><td>Robot></td><td></td><td></td><td></td><td></td><td></td><td></td></rar<>	ndom F	Robot>						
Hunt	ag	Hare						
Log								•

Round 1

- Paired with a *Random Number Generator (Robot):*
 - -50% chance of selecting Stag
 - -50% chance of selecting Hare
- Play for about 10 rounds, cumulative score
- Update strategy anytime

You	Partner	Outcome
Stag	Stag	+4
Stag	Hare	+0
Hare	Hare	+2
Hare	Stag	+3

- Paired with a *Hidden* partner:
 - -Paired with actual person in room but do not know who
 - -If odd number of participants, one is paired with robot
- Play for about 10 rounds, cumulative score
- Update strategy anytime

You	Partner	Outcome
Stag	Stag	+4
Stag	Hare	+0
Hare	Hare	+2
Hare	Stag	+3

- Paired with a *Named* partner:
 - -Paired with actual person in room and know their name
 - -If odd number of participants, one is paired with robot
- Play for about 10 rounds, cumulative score
- Update strategy anytime

You	Partner	Outcome
Stag	Stag	+4
Stag	Hare	+0
Hare	Hare	+2
Hare	Stag	+3

- Two pure Nash equilibria
 - -Hare, Hare: risk-dominant equilibrium (minimize risk)
 - -Stag, Stag: payoff-dominant equilibrium (maximize reward)

		Hare		Stag
		2		0
Hare	2		3	
		3		4
Stag	0		4	

• p > u: choose stag option, p < u: choose hare option

• *u*: Normalized deviation loss, $u = \frac{(2-0)}{(2-0)+(4-3)} = \frac{2}{3}$

Comparing Risk Dominance

• Risk dominance an indicator for strategy selection?

- —Single-shot non-cooperative game theory: yes
- —What about cooperative games with communication or learning?
- Simulate the formation and dissolution of collaborative partnerships between *pairs* of simulated agents
 - -Fixed interaction network structure, payoffs, and initial strategy selection
 - -Repeat until convergence:
 - Play stag hunt with neighbors
 - Imitate the "best" neighbor

Validation Results

November 19, 2019

Application Case: NPOESS

- Five key architecture attributes driving stakeholder preference:
 - **1. Cost**: quantity of resources required to support architecture
 - 2. **Observations**: types of phenomena that can be observed
 - **3. Coverage**: frequency of observations at points of interest
 - 4. **Downlink**: capability to retrieve remote observations to a ground network
 - 5. Latency: time delay between downlink opportunities
- Quantify attributes for architecture d in modeling environment: $X_i(d)$
- Multi-attribute (e.g. additive) utility functions to aggregate stakeholder value preferences:

$$V(d) = \sum_{i=1}^{5} w_i X_i(d)$$

• DoD

Arch.	Cost	Obs.	Coverage	Downlink	Latency	Total
	(0.25)	(0.05)	(0.30)	(0.10)	(0.30)	Value
DMSP	0.92	0.50	1.00	0.90	0.13	0.68
NPOESS	0.65	0.98	0.30	0.98	1.00	0.72
DMSP*	0.10	0.50	1.00	0.90	0.13	0.43

• NOAA/NASA

Arch.	Cost	Obs.	Coverage	Downlink	Latency	Total
	(0.25)	(0.05)	(0.30)	(0.10)	(0.30)	Value
POES	0.92	0.12	0.92	0.33	0.70	0.49
NPOESS	0.60	0.98	0.92	0.98	1.00	0.72
JPSS	0.00	0.28	0.92	0.98	1.00	0.46

Analysis Results

$$R = \frac{1}{2} \ln \left(\frac{u_{DoD}}{1 - u_{DoD}} \right) + \frac{1}{2} \ln \left(\frac{u_{NOAA}}{1 - u_{NOAA}} \right)$$
$$= \frac{1}{2} \ln \left(\frac{0.86}{0.24} \right) + \frac{1}{2} \ln \left(\frac{0.12}{0.88} \right)$$
$$= -0.07$$

 Joint program *slightly* risk dominant ... desirable under cooperative game theory

• More attractive to NASA/NOAA (u = 12%) than DoD (u = 86%)

 Risk dominance could be used to evaluate other joint program architectures in tradespace analysis

Conclusion

- Two types of risk in collaborative projects:
 - -Systemic risk: cost, schedule, and technology uncertainty
 - -Collaborative risk: conflict and coordination failures
- Selten's risk dominance measure can be used to assess collaborative risk from a game-theoretic perspective
- Validated in multi-agent simulations with evolutionary dynamics
- Demonstrated in an example application case based on NPOESS
 - -Describe strategic design scenario
 - -Quantify stakeholder value
 - -Analyze risk dominance and strategic dynamics
 - (Future) Explore alternative joint program architectures

- This material is based on work supported, in whole or in part, by the U.S. Department of Defense through the Systems Engineering Research Center (SERC) under Contract No. HQ0034-13-D-0004.
- Thanks to the graduate students for their contributions:
 - —Ambrosio Valencia-Romero, Ph.D. Candidate in Systems Engineering
 - -Matthew Sabatini, M.E. Student in Space Systems Engineering
 - -Henry Lee, M.E. Space Systems Engineering (Dec '18)
- Contact information for any additional questions:

-Paul T. Grogan, pgrogan@stevens.edu, 201-216-5378

Grogan, P.T. and A. Valencia-Romero (2019). "Strategic Risk Dominance in Collective Systems Design," *Design Science*, In press.