

Systems Engineering Transformation Surrogate Pilot Experiments: Doing Everything in Models to Demonstrate the Art-of-the-Possible

Sponsor: NAVAIR and CCDC-AC

By

Dr. Mark Blackburn 11th Annual SERC Sponsor Research Review November 19, 2019 FHI 360 CONFERENCE CENTER 1825 Connecticut Avenue NW, 8th Floor Washington, DC 20009

www.sercuarc.org

Certain commercial software products are identified in this material. These products were used only for demonstration purposes. This use does not imply approval or endorsement by Stevens, SERC, or CCDE/ARDEC, NAVAIR, nor does it imply these products are necessarily the best available for the purpose. Other product names, company names, images, or names of platforms referenced herein may be trademarks or registered trademarks of their respective companies, and they are used for identification purposes only.

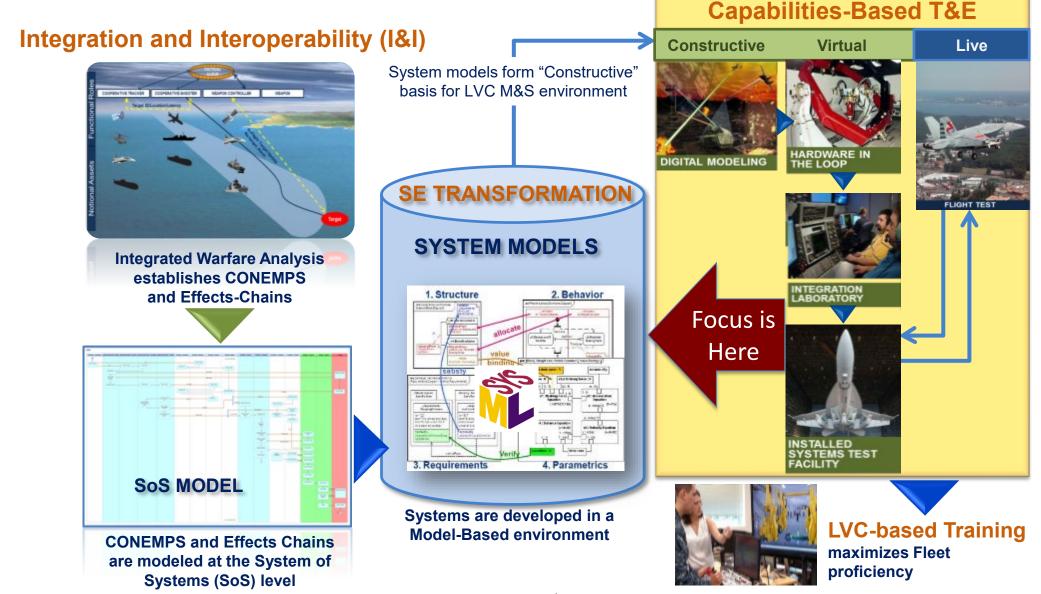
- NAVAIR characterized the Systems Engineering Transformation (SET) Framework for a Digital Engineering (DE)-enabled acquisition. This presentation discusses the Surrogate Pilot use cases, models and lessons learned in assessing the SET Framework for collaboration between government and industry.
- This is an evolving version of a briefing that summarizes the Systems Engineering Transformation (SET) Surrogate
 Experiments. It provides an overview to set the context of the SET Framework concept and Functional Areas. Research
 is one of the functional areas that was defined along with an evolving set of objectives that are being used to guide the
 experiments, and trace the results to the objectives.
- These experiments are being conducted by a team of NAVAIR Subject Matter Experts, SERC Collaborators from Stevens
 Institute and Georgia Tech, and a Surrogate Contractor from Altair. The ongoing results and lessons learned are
 captured on the All Partners Network (APAN.org @ https://community.apan.org/wg/navair-set/set-surrogate-pilot/)
 and being shared with Industry and Government.
- This briefing is Distribution A.

Research Tasks and Collaborator Network

RT-48 RT	-168 – Phase I & II	RT-195	ART-002
Mark Blackburn (PI), Stevens	Mark Blackburn (PI), Stevens	Mark Blackburn (PI), Stevens	Mark Blackburn (PI), Stevens
Rob Cloutier (Co-PI) - Stevens	Dinesh Verma (Co-PI) – Stevens	Mary Bone - Stevens	Dinesh Verma (Co-PI) – Stevens
Eirik Hole - Stevens	Ralph Giffin	Ralph Giffin - Stevens	Kunal Batra – Stevens
Gary Witus – Wayne State	Roger Blake - Stevens	Benjamin Kruse - Stevens	Mary Bone - Stevens
RT-118	Mary Bone – Stevens	Russell Peak – Georgia Tech.	John Dzielski, Stevens
Mark Blackburn (PI), Stevens	Andrew Dawson – Stevens (Phase I)	Stephen Edwards – Georgia Tech.	Steven Hoffenson - Stevens
Rob Cloutier - Stevens	Rick Dove	Adam Baker (Grad) – Georgia Tech.	Steve Hespelt - Stevens
Eirik Hole - Stevens	John Dzielski, Stevens	Marlin Ballard (Grad) – Georgia Tech.	Roger Jones - Stevens
Gary Witus – Wayne State	Paul Grogan - Stevens	Donna Rhodes - MIT	Benjamin Kruse - Stevens
RT-141	Deva Henry – Stevens (Phase I)	Mark Austin – Univ. Maryland	Chris Snyder - Stevens
Mark Blackburn (PI), Stevens	Bob Hathaway - Stevens	Maria Coelho (Grad) – Univ. Maryland	Brian Chell (Grad) – Univ. Maryland
Mary Bone - Stevens	Steven Hoffenson - Stevens	WRT-1008	lan Grosse – Univ. of Massachucetts
Gary Witus – Wayne State	Eirik Hole - Stevens	Mark Blackburn (PI), Stevens	Tom Hagedorn – Univ. of Massachusetts
RT-157	Roger Jones – Stevens	Mary Bone - Stevens	
Mark Blackburn (PI), Stevens	Benjamine Kruse - Stevens	Benjamin Kruse - Stevens	
Mary Bone - Stevens	Jeff McDonald – Stevens (Phase I)	Bill Rouse – Stevens/Georgetown	
Roger Blake - Stevens	Kishore Pochiraju – Stevens	Russell Peak – Georgia Tech.	
Mark Austin – Univ. Maryland	Chris Snyder - Stevens	Selcuk Cimtalay – Georgia Tech.	
Leonard Petnga – Univ. of Maryland	Gregg Vesonder – Stevens (Phase I)	Marlin Ballard (Grad) – Georgia Tech.	
RT-170	Lu Xiao – Stevens (Phase I)	Alanna Carnevale (Grad) – Georgia Tec	h.
Mark Blackburn (PI), Stevens	Brian Chell (Grad) – Stevens	William Stock (Grad) – Georgia Tech.	
Mary Bone - Stevens	Luigi Ballarinni (Grad) – Stevens	Donna Rhodes - MIT	
Deva Henry - Stevens	Harsh Kevadia (Grad) – Stevens	Mark Austin – Univ. Maryland	
Paul Grogan - Stevens	Kunal Batra (Grad) – Stevens	Maria Coelho (Grad) – Univ. Maryland	
Steven Hoffenson - Stevens	Khushali Dave (Grad) – Stevens		
Mark Austin – Univ. of Maryland	Rob Cloutier – Visiting Professor		
Leonard Petnga – Univ. of Maryland	Robin Dillon-Merrill – Georgetown Univ.		
Maria Coelho (Grad) – Univ. of Marylan	d Ian Grosse – Univ. of Massachucetts		
Russell Peak – Georgia Tech.	Tom Hagedorn – Univ. of Massachusetts		
Stephen Edwards – Georgia Tech.	Todd Richmond – Univ. of Southern Califo		
_{SSRR 2019} Adam Baker (Grad) – Georgia Tech.	Edgar Evangelista – Univ. of Southern Gali	fornia, (Bhase I)	4
Marlin Ballard (Grad) – Georgia Tech.			

- WHAT: Context and Scope of NAVAIR SE Transformation
- HOW: Use Evolving Surrogate Pilot and Experiments to Demonstrate Art-of-the-Possible
- HOW: Transformation Elements Moving from Documents to Models
- HOW: Phase II Objectives (FY19) Aligns with SE Transformation (SET) Priorities
- HOW WELL: Contributing Modeling Examples to Support Workforce Development demonstrating Art-of-the-Possible

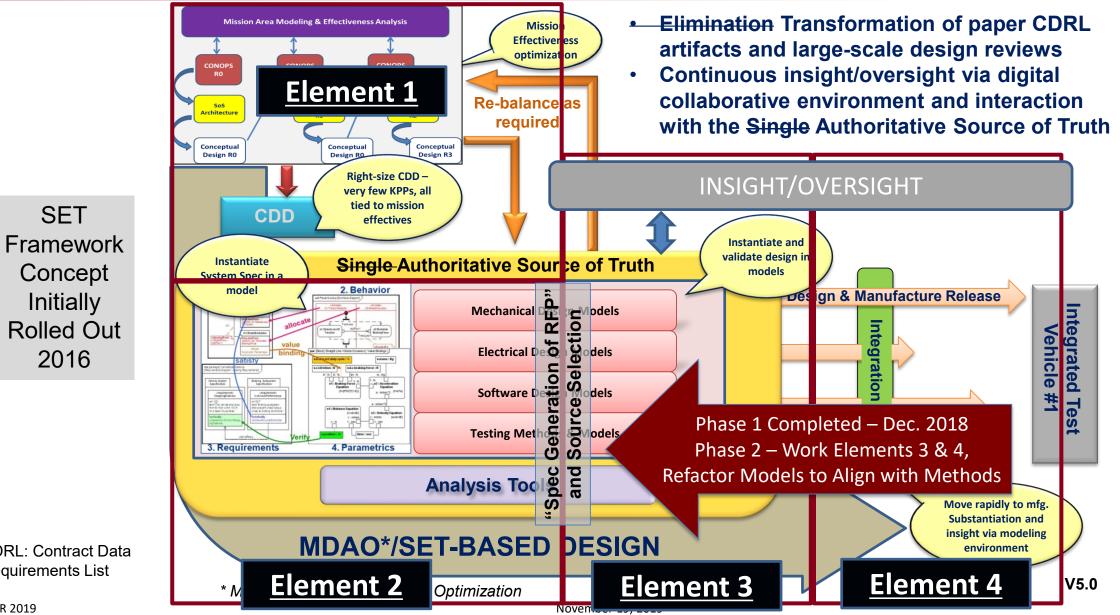
WHAT: Context and Scope of NAVAIR SE Transformation


Research in the Context of

Surrogate Pilot Experiments

November 19, 2019

Capability Based Acquisition - Outpacing the Threat Digital Thread enables rapid delivery of Integrated Capabilities



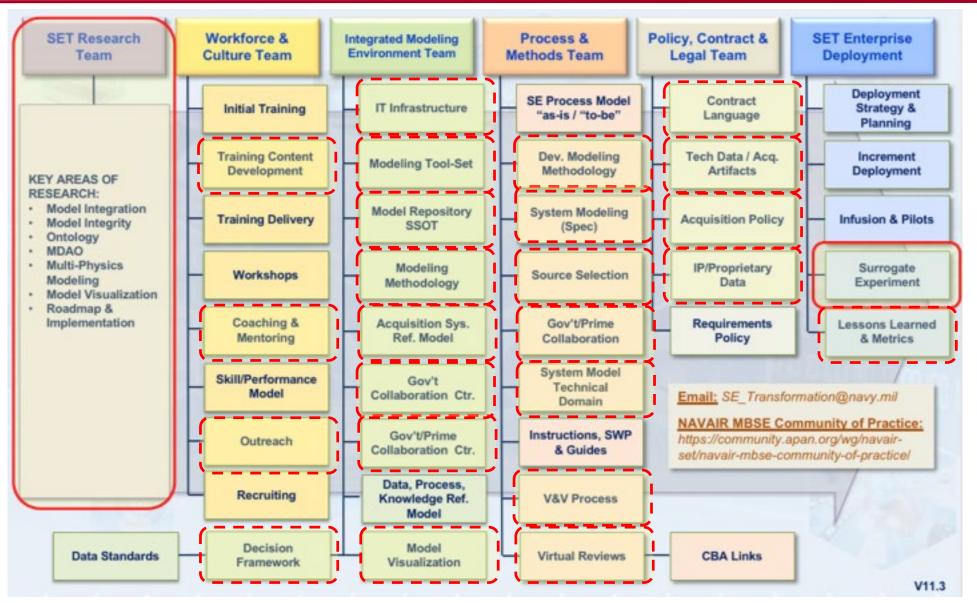
November 19, 2019 NAVAIR Public Release 2017-370. Distribution Statement A – "Approved for public release; distribution is unlimited"

Surrogate Pilot focus is on Characterizing

Assessing, and Refining SET Framework for Model-Based Acquisition

CDRL: Contract Data **Requirements List**

SSRR 2019

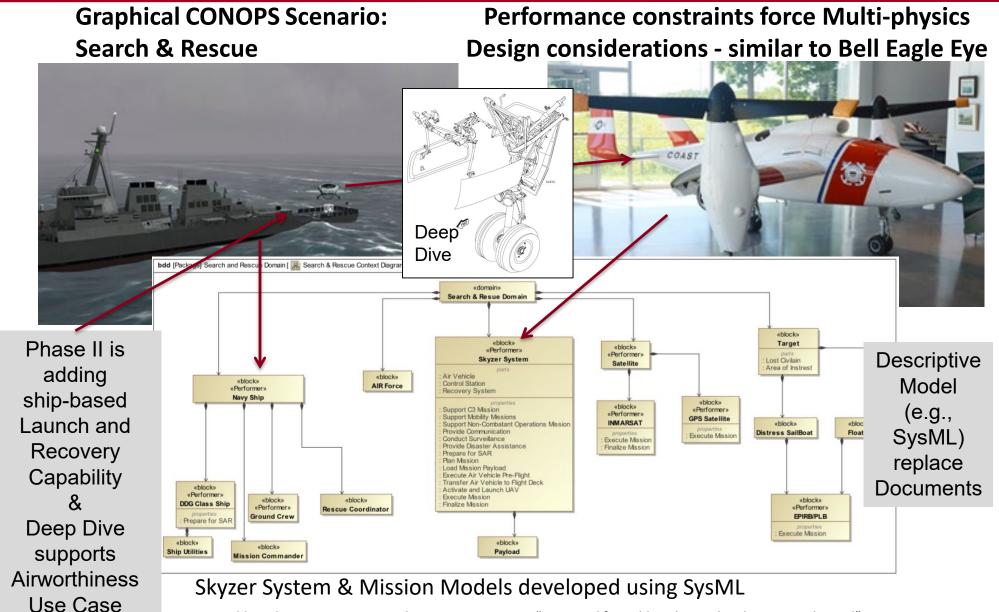

SET

Initially

2016

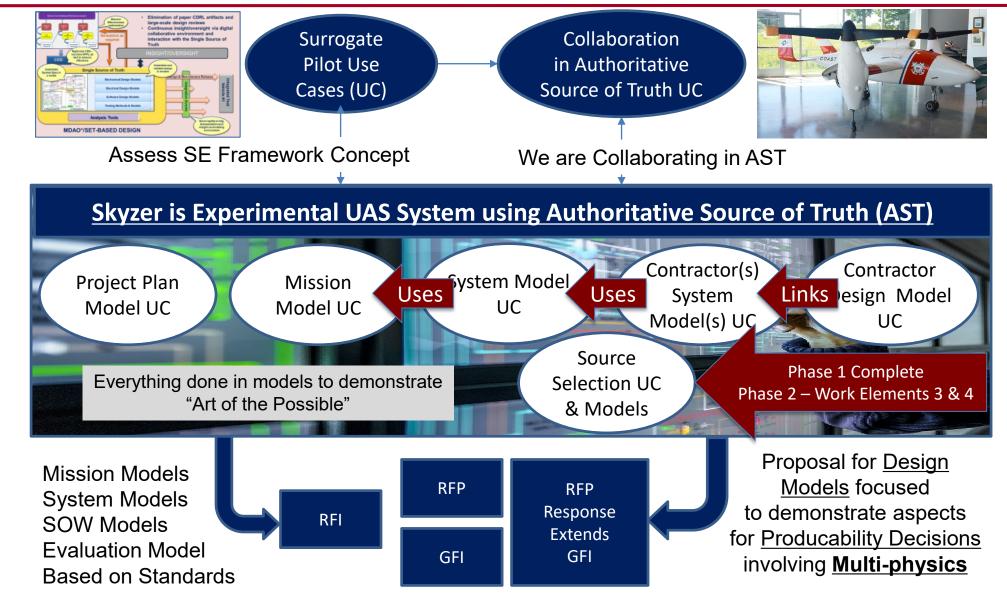
Research and Surrogate Experiment contributes broadly to SET Functional Areas

November 19, 2019 NAVAIR Public Release 2018-194. Distribution Statement A – "Approved for public release; distribution is unlimited"


HOW: Use Evolving Surrogate Pilot and Experiments to Demonstrate Art-of-the-Possible

- Doing "Everything" in Models to show we can
- Operating in a Collaborative Environment
- Using an Authoritative Source of Truth

Surrogate Pilot Scenario: Skyzer UAS & Launch and Recovery


for Landing Gear Deep Dive

NAVAIR Public Release 2019-443. Distribution Statement A – "Approved for public release; distribution is unlimited"

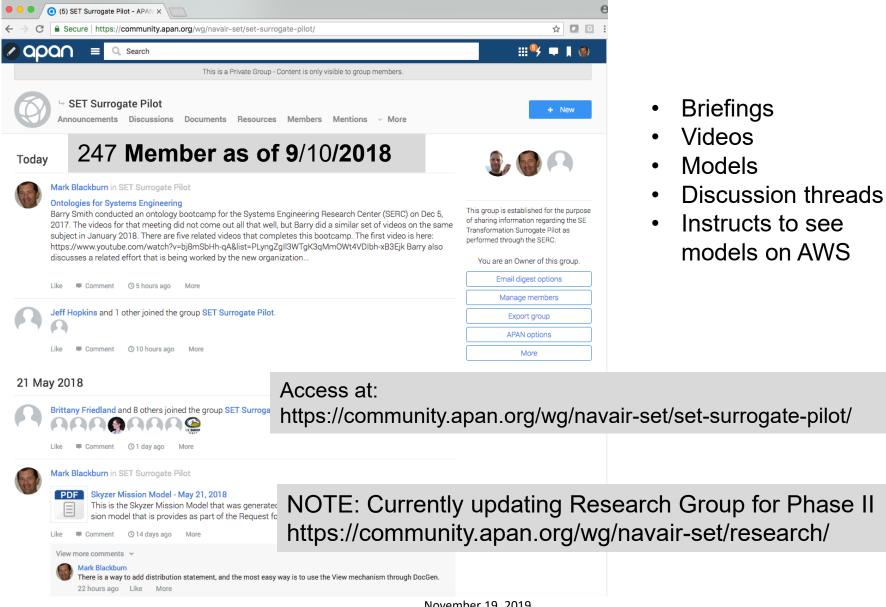
Research Use Cases for Surrogate Pilot and Experimental System (Skyzer)

SSRR 2019

Government

Furnished

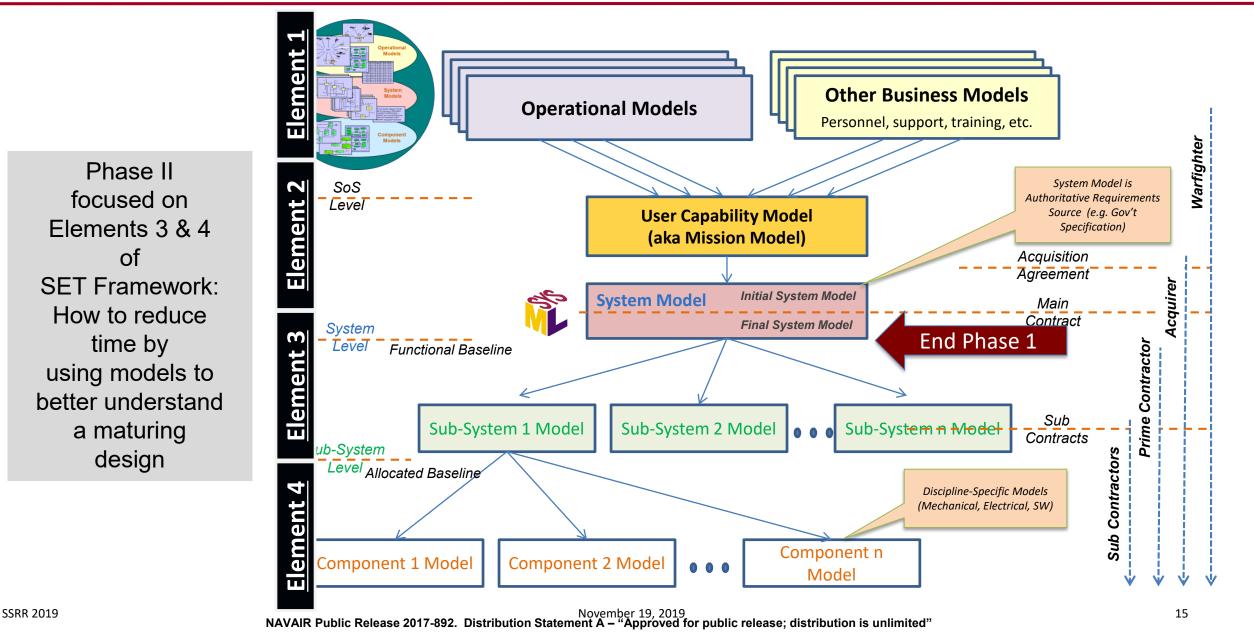
Information


GFI:

NAVAIR Public Release 2018-194. Distribution Statement A – "Approved for public release; distribution is unlimited"

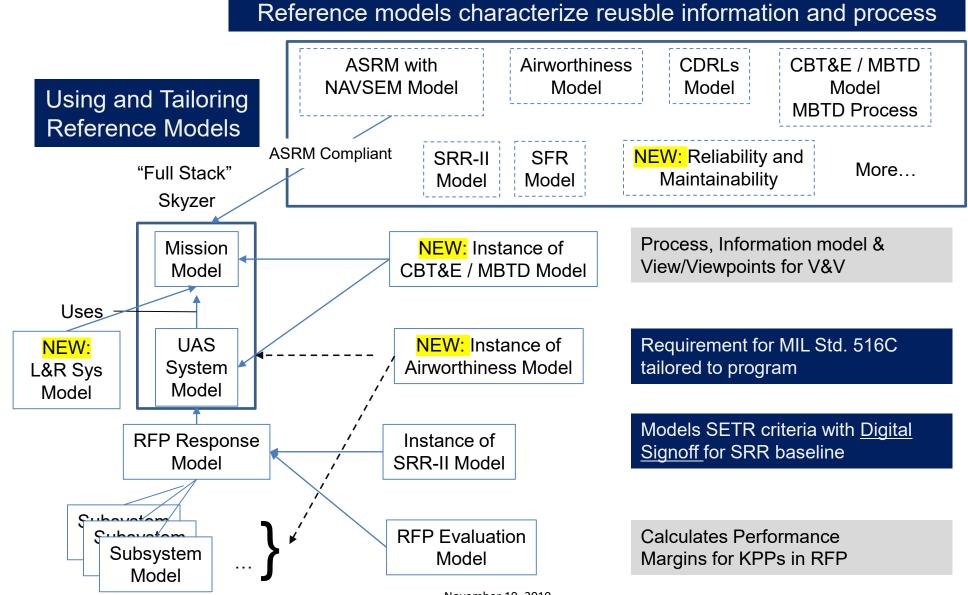
Continuous Updates of Discussion Threads Provided on Public All

Partners Network

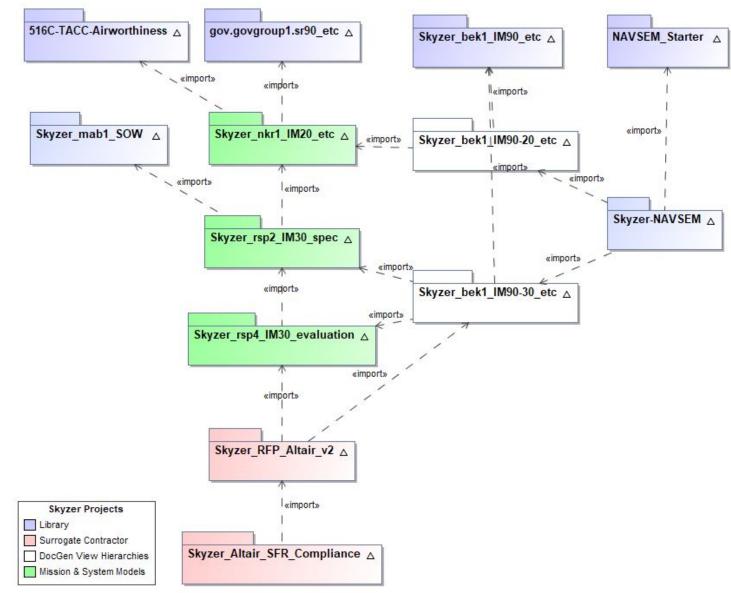

HOW: Transformation Elements Moving from Documents to Models

- Developing/demonstrating Methods for Mission and System models
- Using models collaboratively in Authoritative Source of Truth
- Using OpenMBEE/DocGen to Generate Views for Stakeholder and Discipline-Specific Subject Matter Experts

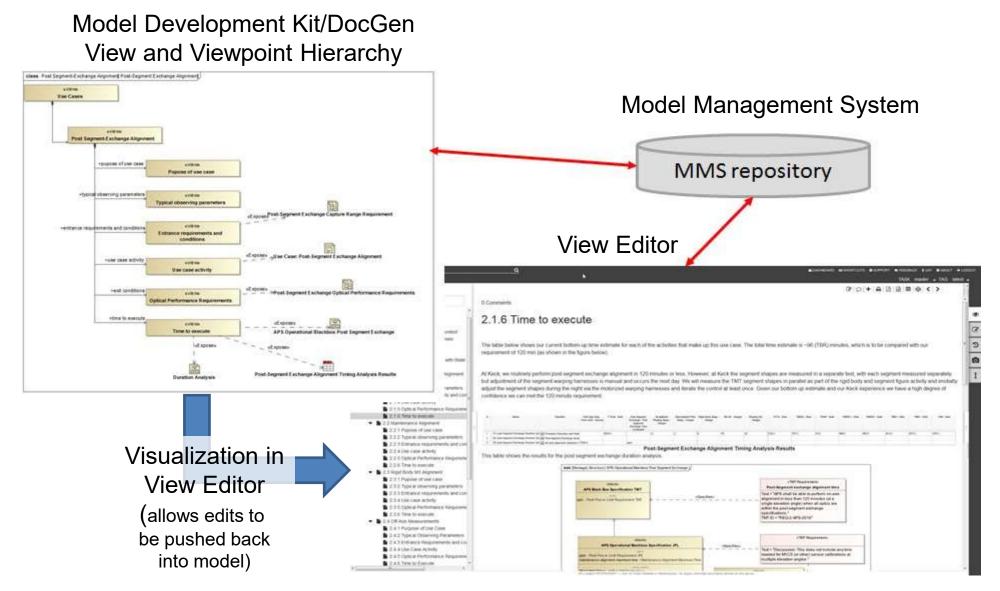
Skyzer Demonstrates Formalizing the Use of Models and


Methods for the SET Framework Elements

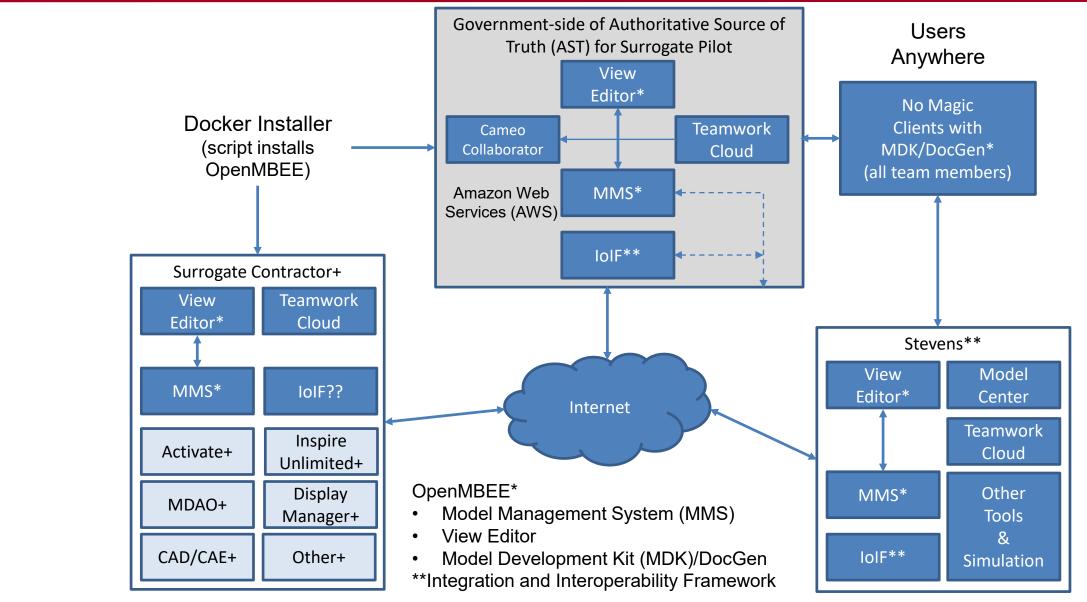
"Full Stack" of Models using Digital Signoff for Transformed


SETR Criteria Represented in a Model

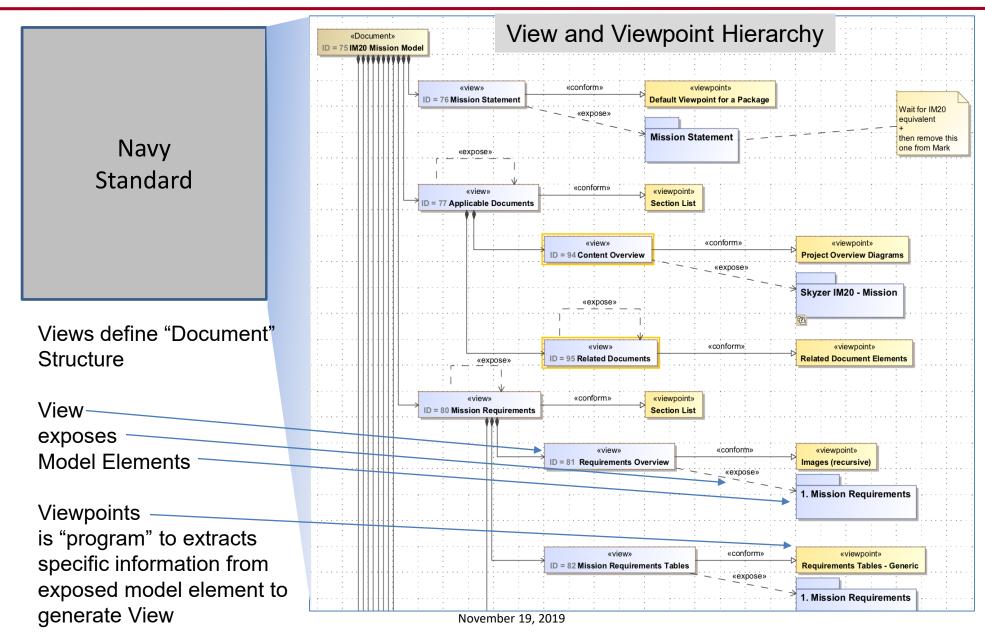
Model Organization –



All Models Linked to Establish Authoritative Source of Truth


Leverage Capabilities of OpenMBEE as Part of Integrated Modeling Environment

November 19, 2019 NAVAIR Public Release 2017-370. Distribution Statement A – "Approved for public release; distribution is unlimited"


Elements of Authoritative Source of Truth

November 19, 2019 NAVAIR Public Release 2018-194. Distribution Statement A – "Approved for public release; distribution is unlimited"

Example View and Viewpoint Hierarchy Used by DocGen

Example: View Editor shows Skyzer Mission Model View

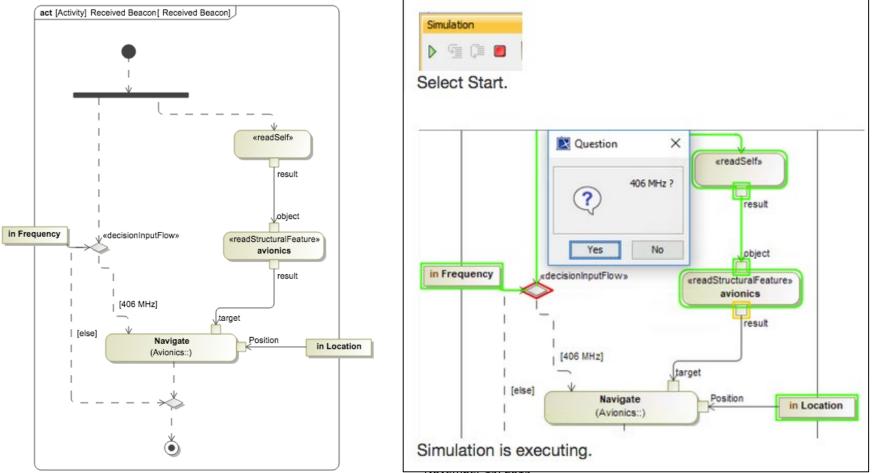
VE Surrogate Pilot Switch Org				Search selected project	Q UAT Help -
Project: Skyzer_bek1_IM90-20_etc 👻 🎢	🕞 🗎 Skj	yzer IM20 Mission Mod	iel		Branch: master
♥ ❷ ✿- ↓ 🖺 + ŵ	🍪 DOC	LIB		$ \mathcal{C} \otimes \mathcal{O} \downarrow_{2}^{1} \in$	EXPORT -
Filter items in the tree	001111	anioutiono capability			
 Skyzer IM20 Mission Model 1 Mission Statement 2 Applicable Documents 	3.5	Performar	nce Requirements		
✓ ■ 3 Requirements	#	Id	Name	Text	△ 🔿 requirementKind
 3.1 Requirements Overview 3.2 Mission Requirements 	1 1.	3.2	P 1.3.2 Cruise Speed	The UAV shall have a cruise speed of 170 knots	KPP
 3.3 Operational Requirements 3.4 Functional Requirements 2.5 Performance Requirement 	2 1.	3.3	P 1.3.3 Max Payload Weight	The mission payload shall be not less than 200 lbs total in four individually deployable segments 50 lb or more.	КРР
 3.5 Performance Requirement 3.6 Design Constraints 3.7 Key Performance Paramet 3.8 Mission Requirements Trac 4 Mission Structure 5 Mission Use Cases 6 Mission Behavior 	3 1.	3.7	P 1.3.7 UAV Operation Period	The system shall have minimum endurance of 4 hr loiter at 50 nm radius	КРР
	4 1.	3.4	P 1.3.4 Operational Radius	The Skyzer UAV shall have and operational radius of 200nm while sustaining cruise speed, carrying at least 100 lb of payload and hovering 15 minutes at the turn around point.	КРР
	5 1.	3.5	■ 1.3.5 Recovery Condition	The Skyzer UAV shall be able to be recovered with at least 30% remaining fuel weight and at least 200 lb of payload.	КРР
7 Mission Parametrics 8 Mission Interface Definitions	6 1.	3.1	■ 1.3.1 Max Speed	The UAV shall have a max speed of 200 knots	
 9 Skyzer UAV 10 Ground Station 	7 1.	3.6	P 1.3.6 Operational Altitude	The Skyzer UAV shall be able to fly at an altitude of at least 15,000 ft. while maintaining minimum maneuverability requirements.	
11 Support Elements					

November 19,

(No Text) Max Speed 1.3.1 Text: The UAV shall have a max speed of 200 knots Stereotype: performanceRequirement

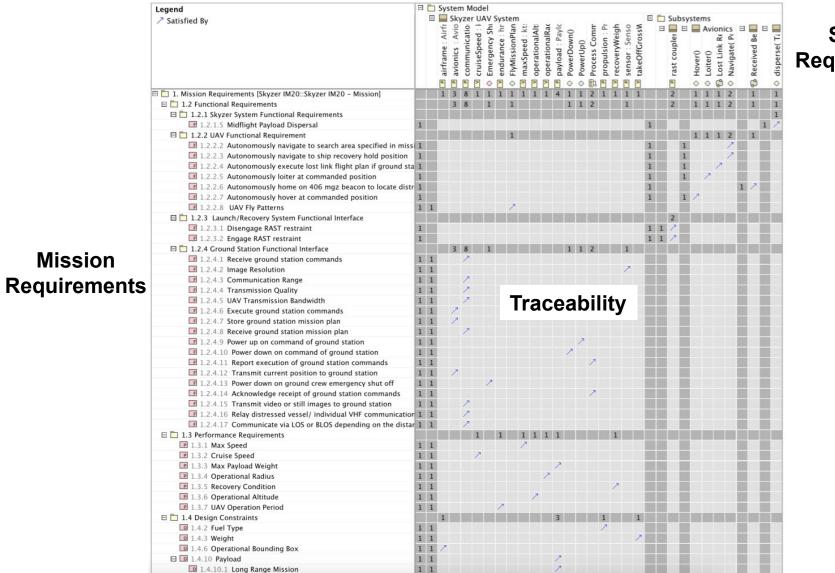
Cruise Speed

ID:


1.3 Performance Requirements

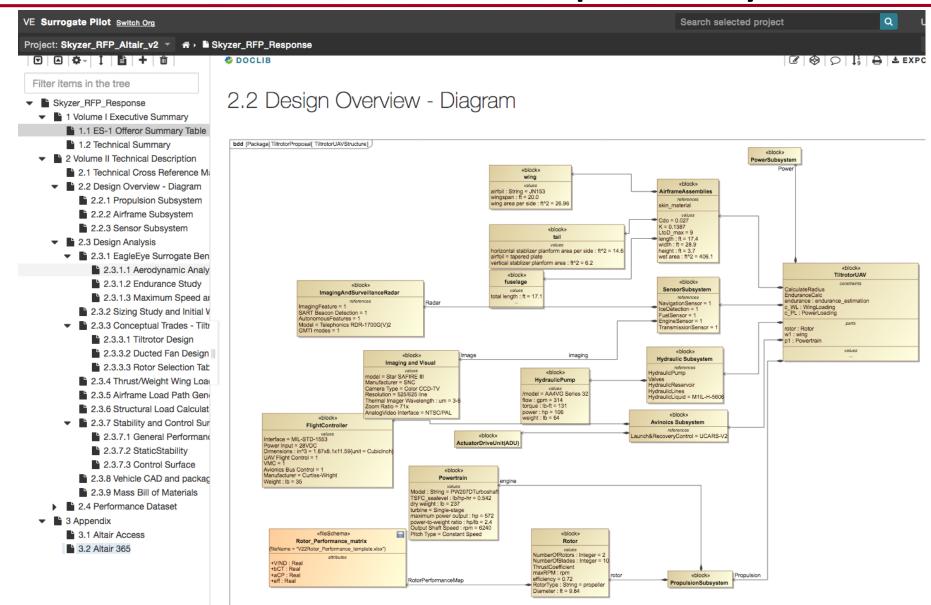
Model information can be "edited" in View Editor (e.g., by SME) and pushed back into Model (Fundamental to AST)

Mission Requirements Refined into Behaviors and Analyzed through Simulations in Skyzer System Model


 State Machine Simulation in System Model supports analysis for understanding/visualizing dynamic behaviors – getting the right model and getting the model right

Skyzer Mission and System Requirements Traceability in Skyzer System Model

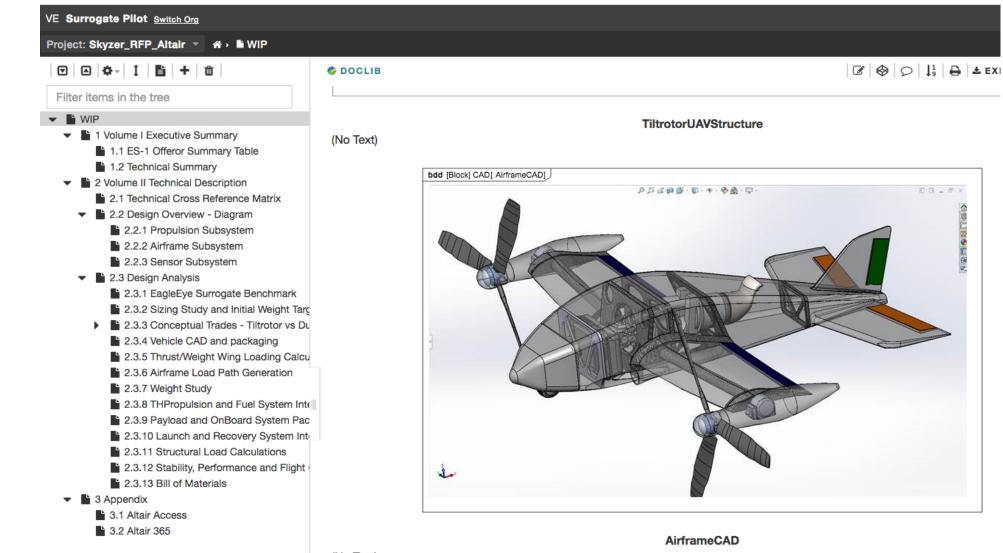
Figure 6.1. Requirements Satisfiability



System Requirements

RFP Response Extends and Refines Skyzer System Model

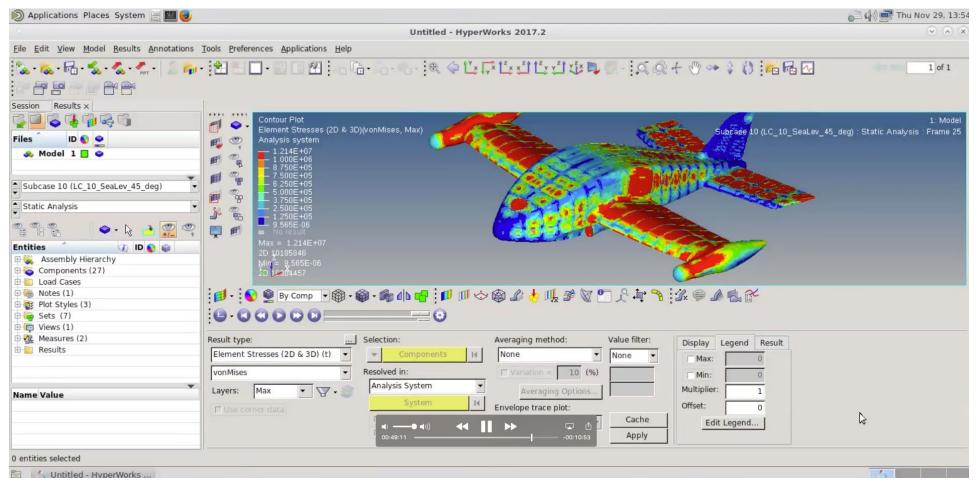
provided by Government as GFI


View of RFP Response Hyperlinks to Discipline-Specific Models

Provided in Generated View

Surrogate Pilot Switch Org			Search selected project Q UAT	Help 👻 🚺
ect: Skyzer_RFP_Altair_v2 ▼ 谷 → ≌ Sk	<pre>kyzer_RFP_Response</pre>		Bran	ch: master 🔹
Iter items in the tree	Engineering Activity Chec	sklist		
 Skyzer_RFP_Response I Volume I Executive Summary 1.1 ES-1 Offeror Summary Table 1.2 Technical Summary 	ENGINEERING ACTIVITY	DELIVERABLES	Offeror's Proposal System Model Element or Documentation Base Vol/Annex and Associated Pag Number	je
 2 Volume II Technical Description 2.1 Technical Cross Reference Main 2.2 Design Overview - Diagram 2.2.1 Propulsion Subsystem 	Eagle Eye Surrogate Benchmark	Engineering system model, supporting CAE models and performance results to satisfy the "Requirement Model" or "System Model" (IM30) and KPP metrics.	EagleEye Surrogate Benchmark	
 2.2.2 Airframe Subsystem 2.2.3 Sensor Subsystem 2.3 Design Analysis 	Sizing Study	Take off weight, empty weight, fuel fraction, warm up, take off, and landing weight fraction. Mission segment fractions.	Sizing Script @ Altair365	
 2.3.1 EagleEye Surrogate Ben 2.3.1.1 Aerodynamic Analy 2.3.1.2 Endurance Study 	Conceptual Trades - Tilt Rotor vs Ducted Fan	Airframe CFD models, co-efficient's of lift and drag, respective propulsive performance results for both concepts.	Conceptual Trades - Tiltrotor vs Ducted Fan	
2.3.1.3 Maximum Speed ar	Initial Weight Targets	Targets set from task 1C.	WeightBudgetScript@Altair365	
 2.3.2 Sizing Study and Initial V 2.3.3 Conceptual Trades - Tiltr 2.3.3.1 Tiltrotor Design 	Vehicle CAD and packaging	Vehicle package space definition and major system locations. Technical Data Package.	Vehicle CAD and packaging	
 2.3.3.2 Ducted Fan Design 2.3.3.3 Rotor Selection Tat 2.3.4 Thrust/Weight Wing Load 	Thrust/Weight Wing Loading Calculations	Airframe load case matrix.	Thrust/Weight Wing Loading Calculation	
 2.3.5 Airframe Load Path Gen 2.3.6 Structural Load Calculat 2.3.7 Stability and Control Sur 	Airframe Load Path Generation	Coarse structural topology optimization results.	Airframe Load Path Generation	
 2.3.7.1 General Performance 2.3.7.2 StaticStability 2.3.7.3 Control Surface 2.3.8 Vehicle CAD and package 	Structural Load Calculations	Benchmark of conventional structural arrangement in current design space	Structural Load Calculations	
 2.3.9 Mass Bill of Materials 2.4 Performance Dataset 3 Appendix 	Stability, Performance and Flight Characteristic Calculations	Final stability, performance and flight characteristic report.	Stability and Control Surface Calculations	
3.1 Altair Access 3.2 Altair 365	Mass Bill of Materials	Mass bill of materials generated from the Technical Data Package.	Mass Bill of Materials	

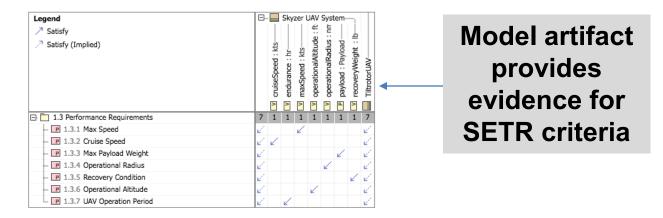
Surrogate Pilot RFP Response in View Editor



2.2.1 Propulsion Subsystem

Views Provides Hyperlinks into Discipline-specific Models and Simulation Analyses

 Research currently investigating how to do reviews and Digital Signoffs in Model for Transforming CDRL/DIDs


Transform CDRLs and DIDS using Digital Signoff in Model Through View Editor

Filter items in the tree MCE_Sandbox_2018_template 1 Introduction 2 Diagram	Last Modified: 11/5/18 12:46 F	,			
 Diagram 2.1 Diagram Approval 3 Tables § System § Subsystem 3.1 Selected Model Elements Approval 4 Requirements 5 Approvals Overview 	This is the documentation text		ge "Example Model Cor	ntent", now in html with formatter	<i>d text</i> and with an included figure:
Enable Editing Add Risk	+ ADD Approved Element Introduction	Risk high	1st Approval Status Name approved	B 🖻 🖉 🗙	2nd Approval Status approved
Add Approval Status Template tailorable	(This table got created in the View Editor, it cross-references the elements to be approved as well as the risk and 1st approval status. The 2nd approval status is plain text and could also contain further comments. Such a table could be created anywhere in the document, but its information does not get into the original SysML model. It is therefore NOT recommended.)				
	+ ADD 2 Diagram Last Modified: 11/5/18 3:36 Pl + ADD	M by ben		"pushed" l	Signoff get back into Moc g theme of AS

November 19, 2019

Digital Signoff for SRR-II Criteria in Skyzer RFP View

PerformanceRequirements

+ ADD

Performance parameters are used in Evaluation model. To maintain the evaluation process, these value can't be redefined in contractor's system model. Therefore, this performance table inherits the value properties defined in Skyzer UAV System.

+ ADD

+ ADD

2.5.3.1 Performance Requirements SignOff

rejected

Last Modified: 12/7/18 11:47 AM by ben

Criteria in existing NAVAIR Systems Engineering Technical Review (SETR) for SRR (can Digital Signoff subsume SETR)

ſ	EXPORT CSV T FILTER 1	TABLE				
	Performance Require	ments S	ignOff		,	·
	Approved Elements	Risk	Approval Status	Approved By	Comment	
	PerformanceRequirements	medium	Value : 🖻 🖺 🗙 🛛	Θ	Criteria SRR-II 1.f Requirements traceability from the CDD	to the requirements baseline has been documented
		,	to be defined ✓ undefined			

Digital Signoff of Source Selection Technical Evaluation Done In the Model that is Part of Authoritative Source of Truth

VE Surrogate Pilot Switch Org		Search selected project	UAT	Help -
Project: Skyzer_RFP_Altair_v2 🔹 🌴	→ La Skyzer_RFP_Response		Brar	nch: mast
	OCLIB	$\left \begin{array}{c} \mathcal{C} \end{array} \right \otimes \left \begin{array}{c} \mathcal{O} \end{array} \right \left \begin{array}{c} \downarrow_{9}^{1} \end{array} \right \left \begin{array}{c} \varTheta \end{array} \right $	🕹 EXPORT 🖥	P
Filter items in the tree	2.1.1 Technical Cross Reference Sign C)ff		

Skyzer_RFP_Response

- 1 Volume I Executive Summary
- 2 Volume II Technical Descriptic

3 Appendix

EXPORT CSV TILTER TABLE

Technical Cross Reference Sign Off

Approved Elements	Risk	Approval Status	Approved By	Comment
Air Vehicle Performance; Operational Radius	medium	approved	Donald Polakovics	Evaluation Worksheet: Overall the aircraft far exceeds the operational radiu KPP.
				Potential Strengths: Very significant margin for additional mission capabiliand versatility.
				Weaknesses: Aircraft may be larger and more expensive than necessary to do the mission.
				Deficiencies: None
				Uncertainty: Performance analysis could not be reviewed in its entirety du to some inconsistent data. Margins seems large enough to cover this however.
UAS Capability	very small	undefined	N/A	N/A
Air Vehicle Performance;	medium	approved	Donald	Evaluation Worksheet: Overall the design appears to have sufficient
Endurance			Polakovics	endurance, with adequate development margin.

Thank you!

Dr. Mark Blackburn Principal Investigator Member of SERC Research Council Member of OpenMBEE Leadership Team School of Systems & Enterprises Systems Engineering Research Center Stevens Institute of Technology

November 19, 2019