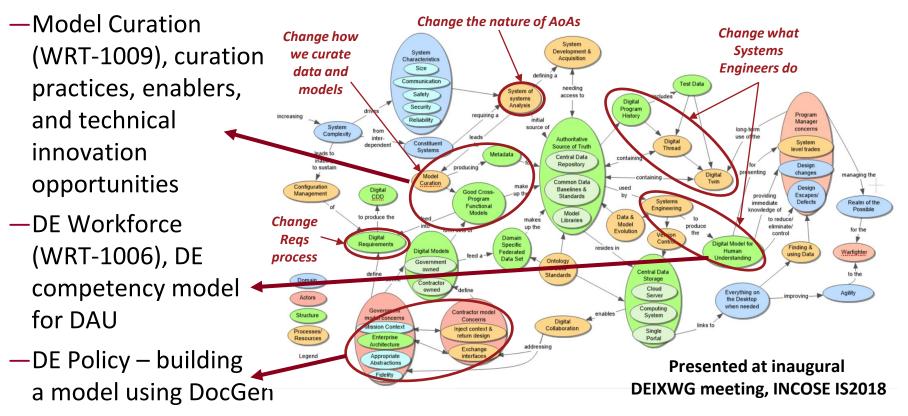


Digital Engineering Metrics

Sponsor: OUSD(R&E)

By

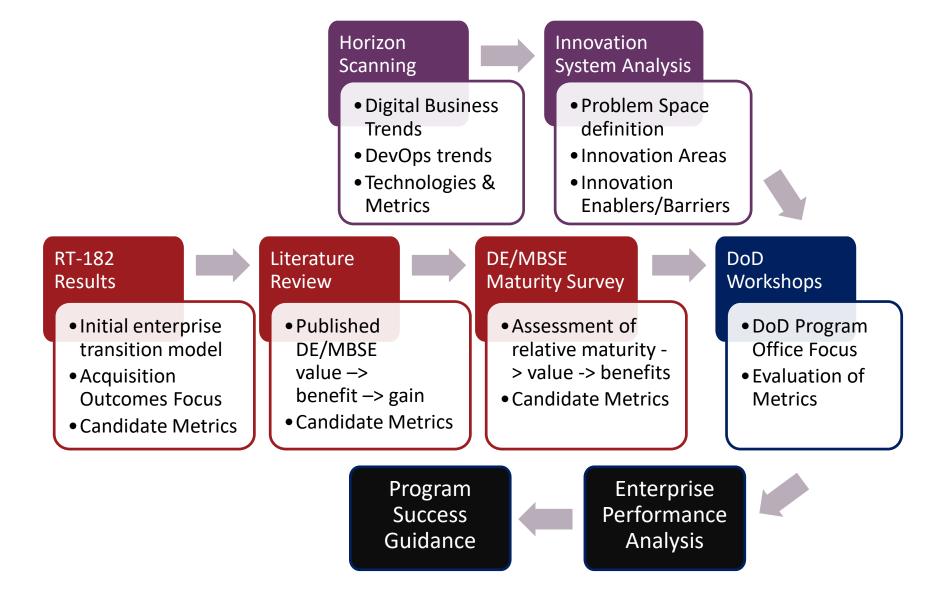
Tom McDermott, Nicole Hutchison, Mark Blackburn, Annie Yu, Neal Chen (Stevens) Eileen Van Aken, Alejandro Saledo, Kaitlin Henderson (Va Tech) 11th Annual SERC Sponsor Research Review November 19, 2019 FHI 360 CONFERENCE CENTER 1825 Connecticut Avenue NW, 8th Floor Washington, DC 20009


www.sercuarc.org

November 19, 2019

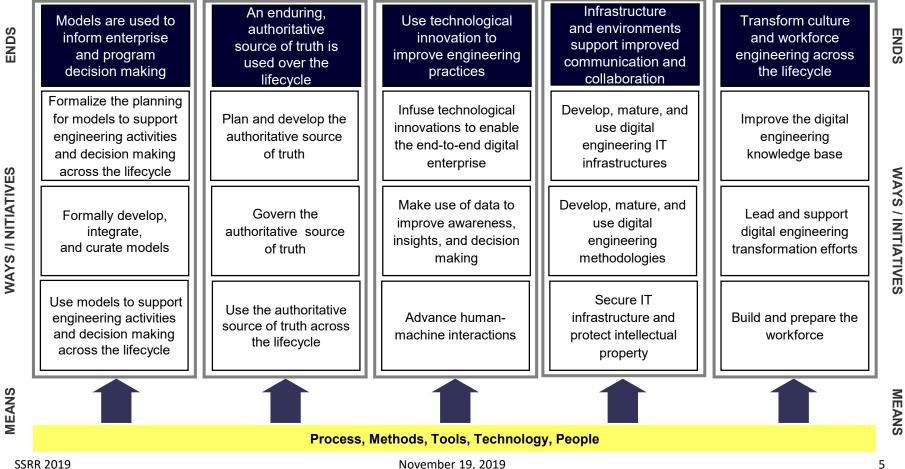
Enterprise Modeling of the DoD Digital Information Exchange Process

- 2018: SERC Project RT-182 conceptually modeled the 5 goals of the DoD DE Strategy to identify necessary acquisition enterprise changes
- 2019: Addressing multiple OUSD/RE research priorities:
 - DE Metrics (WRT-1001), determine critical ROI measures and improved SE value indicators



- If you had a "Program Office Guide to Successful DE Transition" what would that look like?
 - Extend previous SERC work on DE enterprise transformation to the program office level.
- How can the **value and effectiveness** of DE be described and measured?
 - Determine appropriate metrics for evaluating the benefits of DE transformation.
- Are there **game-changing methods and/or technologies** that would make a difference?
 - —Analyze the DE Innovation System (methods, processes, and tools) to identify gaps and challenges and potential paths for innovation.
- Can we describe an organizational performance model for DE transformation?
 - -Generalize the data and results.

WRT-1001 DE Metrics Project Activities



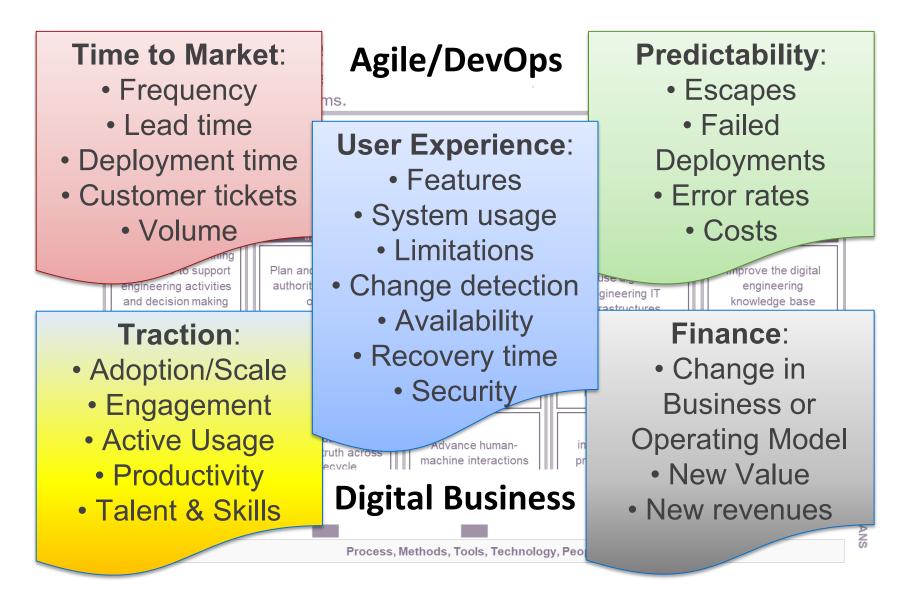
STRATEGIC MANAGEMENT SYSTEM

Digital Engineering (DE) Vision: Modernize how the Department designs, develops, delivers,

operates, and sustains systems.

DE Mission: Securely and safely connect people, processes, data, and capabilities across an endto-end digital enterprise.

- Gartner: "Select just 5 to 9 metrics to track, report and act on. The value of a metric lies in its ability to influence business decision making."
- The best metrics:


https://www.gartner.com/smarterwithgartner/howto-measure-digital-transformation-progress/

- -Have a defined and defensible causal relationship to a business outcome
- -Work as a leading, not lagging, indicator
- -Address a specific defined audience in a way they can understand
- -Drive action when they change from green to yellow to red
- There are no universal metrics must be enterprise specific
- Good Digital Transformation metrics have some traits
 - -Measure people **adoption**, and enterprise process **adoption**
 - -Analyze breadth of usability, and issues with usability
 - -Measure productivity indicators
 - -Generate new value to the enterprise (revenue, operational efficiency, etc.)

Horizon

Scanning

RT-182 RESULTS RESEARCH CENTER		DE S	Success	Measures fro	m RT-182
inform enterprise and program decision making	during, ritative of truth is over the cycle	ative innovation to truth is improve er the engineering		Infrastructure and environments support improved communication and collaboration	Transform culture and workforce engineering across the lifecycle
Quality: • Defects/Design Escapes • AoA coverage • Design space explored • SE rigor			 Knowledge Transfer: Data/Model reuse Link to Mission Eng Depth of review Expanded Visualization Innovation 		
 CM Velocity/Agility: Data/model reuse Decision times Cycle time/Agility Data search time Standards 	Colla Auto Inter	abora omatio	on	Adoption: • Pace of adoption • Infrastructure investment • Enterprise process & tool integration • Tool/model interoperability • Role/Skill transition	

Reduce defects & design escapes

RT-182

Results

- More robust, SoS-based AoAs
- Increase design space exploration
- Improved SE rigor & maturity
- SE has more time for quality control
- Comprehensive, effective CM
- Increase speed of finding & using data
- Improve agility
- More rapid program decision cycles
- Data & model reuse
- Incorporation of standards
- Improved collaboration across disciplines & locations
- Improved reasoning/inference leads to better automation
- Improve modularity and interoperability

- Manage Complexity knowledge sharing & transfer
- Repeatable link to mission level simulation, capabilities
- Expanded visualizations for pattern analysis & decision making
- Amount of system reviewed in SETR process
- Enable innovation
- Pace of DE/MBSE adoption
- Infrastructure investment
- Enterprise process & tool integration
- Tool/model interoperability successes
- Replace tech writers with modelers

- Searched 20 journals and conference proceedings for any paper that mentions Model-Based Systems Engineering. Identified papers that mention a benefit of MBSE and what the source of that benefit was: measured gains, observed gains, perceived gains (no source for benefit), reference
 - -Total Papers that mention MBSE: 852
 - Papers that mention benefits: 361
 - —Measured gains: 3

Literature

Review

- -Observed gains: 27
- -Perceived gains: 236
- -Reference: 114

—Misc.: 2

Objective	 Assess value and effectiveness of MBSE adoption for improving business outcomes (gov't, industry) – benefits vs. traditional methods. Develop a profile of MBSE use and meeting expectations across the life cycle. Where are we as organizations, and as an industry? Building models, or using models? Applying what we learn. Enable adopters to conduct a qualitative or quantitative assessment of their progress against MBSE best practices and guidance on developing an improvement roadmap
Method	 Conduct an industry survey of MBSE capability. Align with INCOSE draft DE Capabilities Definition matrix. Characterizing MBSE practices, capability, value, benefits. Probe alignment and integration with other adopter initiatives (e.g., PLM, DevOps, cross-discipline) Collect and share best practices and assets on MBSE benefits/value from community
Organizational Involvement	 Participation call through industry associations: INCOSE (lead), NDIA, Government sponsorship and support: DoD (OUSD R&E), FFRDCs (SERC) Survey administration by DoD SERC (Stevens Institute) - "honest broker" to protect proprietary data.
Schedule	• Survey: define (Sep-Oct); instrument (Oct-Nov); distribute (Dec-Jan); analyze (Feb-Mar)
Core Team	 INCOSE: Garry Roedler; Troy Peterson NDIA: M&S Committee (Chris Schreiber); SE Division (Joe Elm, Geoff Draper; Garry Roedler) SERC: Tom McDermott, Nicole Hutchinson

TEMS

MBSE Survey Overview

Topics	Summary of Survey Questions	Topics	Summary of Survey Questions	
1. MBSE Usage	 MBSE strategy documented at enterprise level MBSE processes & tools integrated, inform enterprise staff Q: Primary value of cross-functional MBSE integration? 	7. Model Sharing and Reuse	 19. Teams establish, share, reuse org model libraries 20. Org interface around models for stakeholder use 21. Shared models used to consistently manage programs across lifecycle 	
2. Model Manage-	 Taxonomy for modeling across organization Well-defined processes/tools for model management. 		22. Q: org implementation for data/model discovery, reuse?	
ment6. Standard org guidance for model management/tools7. Q: Business value from consistent model management?		8. Modeling Environments	23. Modeling environment security24. Modeling environment protects IP25. Cross-discipline processes for tools, data	
3. Technical Manage- ment	8. Modeling basis for enterprise org processes9. MBSE process support for technical reviews10. Q: Value of MBSE (or digital engrg) in technical		interoperability 26. Q: value from collaborating on models across disciplines	
	reviews?	9. Orrenizational	27. Q: most challenging org obstacles for MBSE?	
4. Metrics	11. Modeling provides measurable improvement across projects12. Consistent metrics across programs/enterprise?	Organizational Implementation	28. Q: Best organizational enablers for MBSE? 29. Q: Biggest changes our org needs forMBSE?	
	13. Q: Most useful metrics?	10. Workforce	30. Organization defined critical roles to support MBSE	
5. Model14. Defined processes/tools for V&V of modelsQuality15. Defined processes/tools for data/model quality			31. Q: Top MBSE roles in your organization?32. Org staffing adequate to fill MBSE-related roles?	
6. Data	assurance 16. Org approach for data interface between tools	11. MBSE Skills	33. Defined critical skills for MBSE 34. Q: The most critical skills for MBSE?	
Manage-	17. Data managed independent of tools for portability			
ment	18. Q: Data management roles/processes?	12. Demographics	Organizational size, domain, MBSE experience	

Survey content is derived from the draft INCOSE Digital Engineering Capabilities Definition

- Basis from The Aerospace Corporation MBSE Community Roadmap and the NASA MSFC MBSE Maturity Matrix
- Developed through a series of workshops with INCOSE and NDIA to form a proposed comprehensive Model-Based Enterprise Capability Matrix
- Will complete and release as an INCOSE DE Capabilities Document, Jan 2020

Model-Based								
Capability Stages	Stage 0	Stage 1	Stage 2	Stage 3	Stage 4			
Fools & IT Infrastructure								
Collaboration	E-mail <i>,</i> telecom.	System Model File Exchange.	Various organizations working on different parts of model. Full model integrated by a single organizations.	Partial On-line, real-time collaboration amongst distributed teams	On-line, real-time collaboration amongst distributed teams			
Disparate Database/Tool interoperability	None	Tool-to-Tool, ad hoc interoperability	Partial Federated Database Management System (FDBMS)	Main tools interoperable. Supporting tools interact through file transfer.	Fully Federated w/ standard "plug-and-play" interfaces. Data is interchanged among tools			
Inter-Database/Tool Data Item Associations	Databases/to ols are independent	Inter- Database/Tool Data Item associations defined	Inter-Database/Tool Data Item associations defined, captured, managed	Inter-Database/Tool Data Item associations among all data items defined, captured, managed, and traceable	Inter-Database/Tool Data Item associations among all data items defined, captured, managed, and traceable where changes in one data source alerts owners of other data sources of intended updates			
User IF, Viewpoint/Views	N/A	Doc Gen	UI draws from Model app	UI draws from multiple models/DBs	UI supports Interrogation; multiple configs			

DE incorporated into organization policy & work instructions

DE/MBSE

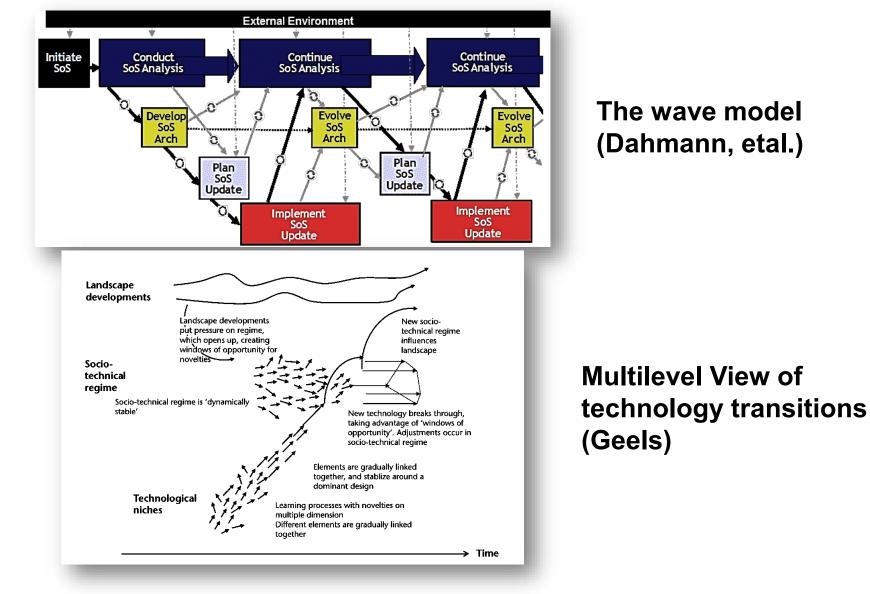
- Appropriate tools, environments, methods, resources available
- Organizational lexicon & taxonomies integrated into data repositories
- Model management activities in place •
- DE basis incorporated into SE process descriptions for each phase
- Model CM applied
- Digital Threads and Digital Twin artifact baselines maintained in process
- Requirements traceable across programs at the enterprise level
- Model development practices in place
- DE basis incorporated into SETR criteria, processes, and artifacts
- Have a quality and improvement program that incorporates modeling
- Have a DE-based SE metrics program including model metrics
- Model reuse standards, processes, and activities

- Model development standards, processes, and activities
- Model assurance standards, processes, and activities
- Fully federated data & IT infrastructure
- Data interchange across tools
- Data change notification and traceability
- Data and model libraries established and shared
- Data interrogation standards, processes, and activities
- Simulation standards, processes, and activities
- Data & information supports discoverable knowledge (data-driven decision processes)
- Enterprise planning & decisions from digital artifacts (threads and twins)
- Tool research & improvement forums in place
- Model exchange standards, processes, and ۲ activities with acquirers and subcontractors
- Training programs
- Model development standards
- Roles, competencies, and skills in place

- Requirements growth, volatility, discovery
- System Definition Change Backlog rate, resolution time, closure rate
- Interface Trends discovery
- Requirements Validation completed
- Requirements Verification completed
- Work Product Approval in-work, rework
- Review Action Item Closure burndown
- Risk Exposure number, burndown
- Risk Treatment #actions
- Technology Maturity TRLs and change
- Technical Measurement TPMs
- SE Staffing & Skills plan/actual

- Process Compliance discrepancies
- Facility & Equipment Availability
- Defects/Errors discovery, closure, phase containment
- System Affordability cost & confidence
- Architecture base measures, maturity by review cycle
- Schedule & Cost Pressure budget, schedule, risks

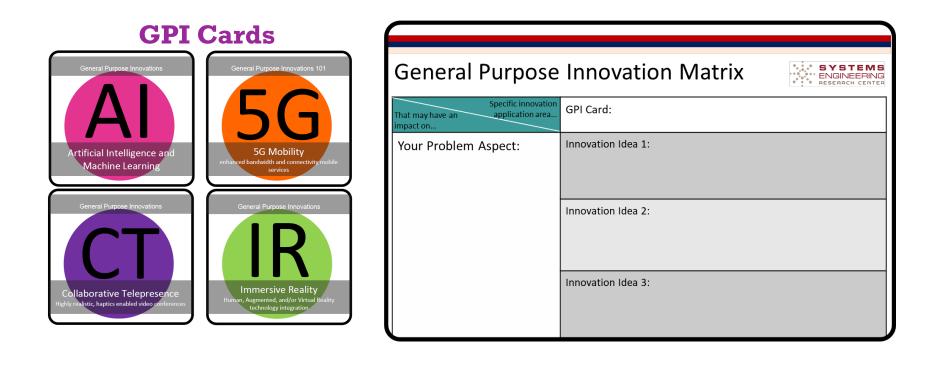
* Effected by DE


- 5G mobility enhanced bandwidth and connectivity mobile services
- Collaborative telepresence Highly realistic, haptics enabled video conferences
- AI and ML Artificial Intelligence and Machine Learning
- Immersive Realities Human, Augmented, and/or Virtual Reality technology integration
- Blockchain Blockchain derived technologies to manage workflows
- Cloud Evolution Evolving cloud computing architectures
- NL/Chatbots/social robots true human realistic natural language interfaces
- IoT Internet of Things sensors and architectures
- Low-code SW Domain specific design languages/visual composition design methods
- DevSecOps Secure Continuous development and deployment environments
- Quantum computing Evolving non-binary computing architectures
- Advanced Manufacturing Rapid programming/realization of hardware design
- DNA-based Data Storage High speed, ultra-high capacity storage devices
- **Digital Identities** Computer (not human) determines identity verification

* SERC Project WRT-1001 presented to the Digital Engineering Working Group 08/2019

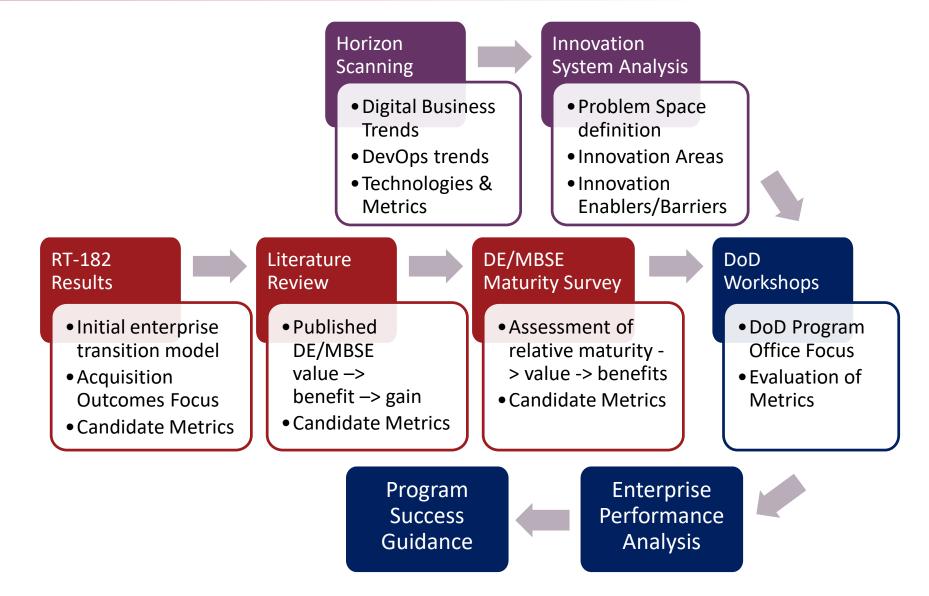
Innovation System Analysis

Competing Views of Innovation System Evolution


Innovation

System Analysis

GPI Application Generator


Start with a pressing challenge, then generate ideas

How might we improve tool and model interoperability?

Summary and Completion

Questions?

Thank you!