
SSRR 2019 November 19, 2019 1

Systems Qualities Ontology, Tradespace
and Affordability

Sponsor: OUSD(R&E) | CCDC
By

Prof. Barry Boehm, USC
11th Annual SERC Sponsor Research Review

November 19, 2019
FHI 360 CONFERENCE CENTER

1825 Connecticut Avenue NW, 8th Floor
Washington, DC 20009

www.sercuarc.org

SSRR 2019 November 19, 2019 2

Outline

• Project Origins
―Support of DoD Engineered Resilient Systems Initiative
―Need for and development of Systems Quality Ontology

• Project Teammate Contributions
―AFIT/NPS
―GaTech
―MIT
―Penn State
―Wayne State
―USC/UVa/NPS

SSRR 2019 November 19, 2019 3

• Engineered Resilient Systems a US DoD priority area in 2012

• Most DoD activity focused on physical systems
―Field testing, supercomputer modeling, improved vehicle design and

experimentation

• SERC tasked to address resilience, tradespace with other SQs for
cyber-physical-human systems
―Vehicles: Robustness, Maneuverability, Speed, Range, Capacity, Usability,

Modifiability, Reliability, Availability, Affordability
―C3I: also Interoperability, Understanding, Agility, Relevance, Speed

• Resilience found to have numerous definitions
―Wikipedia 2012 proliferation of definitions
―Weak standards: ISO/IEC 25010: Systems and Software Quality

System Quality Ontology Origins

SSRR 2019 November 19, 2019 4

Proliferation of Definitions: Resilience

• Wikipedia 2012 Resilience variants: Climate, Ecology, Energy Development,
Engineering and Construction, Network, Organizational, Psychological, Soil

• Ecology and Society Organization Resilience variants: Original-ecological,
Extended-ecological, Walker et al. list, Folke et al. list; Systemic-heuristic,
Operational, Sociological, Ecological-economic, Social-ecological system,
Metaphoric, Sustainabilty-related

• Variants in resilience outcomes
―Returning to original state; Restoring or improving original state;

Maintaining same relationships among state variables; Maintaining
desired services; Maintaining an acceptable level of service; Retaining
essentially the same function, structure, and feedbacks; Absorbing
disturbances; Coping with disturbances; Self-organizing; Learning and
adaptation; Creating lasting value

―Source of serious cross-discipline collaboration problems

SSRR 2019 November 19, 2019 5

• Oversimplified one-size-fits all definitions
―Reliability: the degree to which a system, product, or component

performs specified functions under specified conditions for a specified
period of time

―OK if specifications are precise, but increasingly “specified conditions”
are informal, sunny-day user stories.
o Satisfying just these will pass “ISO/IEC Reliability,” even if the system fails on

rainy-day user stories
o Surprisingly for a quality standard, it will pass “ISO/IEC Reliability,” even if

system fails on satisfying quality requirements
o Resilience not mentioned

―Need to reflect that different stakeholders rely on different capabilities
(functions, performance, flexibility, etc.) at different times and in
different environments

―Weak understanding of inter-SQ relationships, e.g. Security

10-16-2019 5SERC; USC

Weak standards: ISO/IEC 25010:
Systems and Software Quality

SSRR 2019 November 19, 2019 6

Example of SQ Value Conflicts: Security IPT

• Single-agent key distribution; single data copy
―Reliability: single points of failure

• Elaborate multilayer defense
―Performance: 50% overhead; real-time deadline problems

• Elaborate authentication
―Usability: delays, delegation problems; GUI complexity

• Everything at highest level
―Modifiability: overly complex changes, recertification

SSRR 2019 November 19, 2019 7

Example of Current Practice
• “The system shall have a Mean Time Between Failures of

10,000 hours”

• What is a “failure?”
―10,000 hours on liveness
―But several dropped or garbled messages per hour?

• What is the operational context?
―Base operations? Field operations? Conflict operations?

• Most management practices focused on functions
―Requirements, design reviews; traceability matrices; work breakdown

structures; data item descriptions; earned value management

• What are the effects of or on other SQs?
―Cost, schedule, performance, maintainability?

SSRR 2019 November 19, 2019 8

Need for and Nature of SQs Ontology

―Nature of an ontology; choice of IDEF5
structure

―Stakeholder value-based, means-ends
hierarchy

―Key role of Maintainability
―Means of clarifying types of Resilience

10-16-2019 8SERC; USC

SSRR 2019 November 19, 2019 9

Nature of an ontology; choice of IDEF5 structure

• An ontology for a collection of elements is a definition of
what it means to be a member of the collection

• For “system qualities,” this means that an SQ identifies an
aspect of “how well” the system performs
―The ontology also identifies the sources of variability in the value of

“how well” the system performs
―Functional requirements specify “what;” NFRs specify “how well”

• After investigating several ontology frameworks, the IDEF5
framework appeared to best address the nature and sources
of variability of system SQs
―Good fit so far

SSRR 2019 November 19, 2019 10

Current SERC SQs Ontology
• Modified version of IDEF5 ontology framework
―Classes, Subclasses, and Individuals
―Referents, States, Processes, and Relations

• Top classes cover stakeholder value propositions
―Mission Effectiveness, Life Cycle Efficiency, Dependability, Changeability

• Subclasses identify means for achieving higher-class ends
―Means-ends one-to-many for top classes
―Ideally mutually exclusive and exhaustive, but some exceptions
―Many-to-many for lower-level subclasses

• Referents, States, Processes, Relations cover SQ variation
o Referents: Stakeholder-SQ value-variation (gas mileage vs. size, safety)
o States: Internal (miles driven); External (off-road, bad weather)
o Processes: Internal (cost vs. quality); External (haulage, wild driver)
o Relations: Impact of other SQs (cost vs. weight vs. safety)

SSRR 2019 November 19, 2019 11

Stakeholder value-based, means-ends hierarchy

• Mission operators and managers want improved Mission Effectiveness
― Involves Physical Capability, Cyber Capability, Human Usability, Speed, Accuracy,

Impact, Endurability, Maneuverability, Scalability, Versatility, Interoperability

• Mission investors and system owners want Life Cycle Efficiency
― Involves Cost, Duration, Personnel, Scarce Quantities (capacity, weight, energy, …);

Manufacturability, Maintainability

• All want system Dependability: cost-effective defect-freedom, availability, and
safety and security for the communities that they serve
― Involves Reliability, Availablilty, Maintainability, Survivability, Safety, Security,

Robustness

• In an increasingly dynamic world, all want system Changeability: to be rapidly
and cost-effectively changeable
― Involves Maintainability (Modifiability, Repairability), Adaptability

SSRR 2019 November 19, 2019 12

A

B

A

B C,D

Means to End (and) Subclass of (or)

Dependability,
Availability

Reliability Maintainability

Defect Freedom
Survivability

Fault Tolerance

Repairability

Test Plans, Coverage
Test Scenarios, Data
Test Drivers, Oracles

Test Software Qualities

Testability

Complete Partial

Robustness
Self-Repairability

Graceful
Degradation

Choices of
Security,
Safety

…

Modifiability

Dependability, Changeability, and Resilience

Testability, Diagnosability, etc.

Changeability
Resilience

Adaptability

SSRR 2019 November 19, 2019 13

Outline

• Project Origins
―Support of DoD Engineered Resilient Systems Initiative
―Need for and development of Systems Quality Ontology

• Project Teammate Contributions
―AFIT/NPS
―GaTech
―MIT
―Penn State
―Wayne State
―USC/UVa/NPS

Put your logo
here on the
master slide

SSRR 2019 November 19, 2019 14

AFIT-NPS Contributions

• Design of Vehicle Families
―Associated reuse cost/schedule savings models

Control of swarms of autonomous vehicles;
associated flight test at USAF facility

Associated cost tradespace models
• Monterey Phoenix was used to model software system and user behaviors
• The methodology extracts an unadjusted function point (UFP) count from

Monterey Phoenix’s executable architecture models for use in software cost
estimation

• The COCOMO II model is used to input the UFP count to determine cost
estimates

• Allows the assessment of architecture design decisions and their cost impacts

SSRR 2019 November 19, 2019 15

Georgia Tech Contributions

• The Georgia Tech Research Institute (GTRI) began with an existing US Marine
Corps design and cost model: the Framework for Assessing Cost and
Technology (FACT). They extended the model into a toolset including SysML,
the NASA MDAO Framework, Open-source web frameworks, and the MIT
Epoch-Era analysis framework, along with collaborating with USC in
developing a SysML-based extension of the COSYSMO SysE cost model.

SSRR 2019 November 19, 2019 16

MIT Contributions

• Extended Ross-Rhodes Changeability Semantic Framework

• Integrated with extended MIT Epoch-Era Analysis Framework
―Applied to several USAF systems analyses

• Compared with USC ontology framework

SSRR 2019 November 19, 2019 17

Penn State Contributions

• Extended existing design and analysis toolset developed for and
used by the Navy to enable addressal of set-based design

Consideration
Set i

Consideration
Set i+1

Universal Set

Rev
isit a

 Pre
viou

s Mo
del a

nd T
rade

 Spa
ce

TSEi with Modeli

TSEi+1

develop models

generate data

visualize data

explore sensitivities, find efficient
designs, eliminate sets, explore
limits, highlight preferences, etc.

modify model, input
bounds, analyses, etc.

SSRR 2019 November 19, 2019 18

Wayne State Contributions

• System Engineering (SE) for Acquisition Qualities and Tradeoffs in
Autonomy Enabled Military Systems (AEMS) with Machine Learning
(ML) Applications for Manned-Unmanned Teaming (MUM-T)

Set-Based Design in Action 1

• In common practice, ML applications are designed to provide the “maximum likelihood” prediction. A
single “best” point solution is selected, and propagated in the chain of ML modules.

• In both classification and regression problems, ML can provide the probability distribution of alternative
results. In systems of cascading or composed ML modules, assessment of the distribution of answers
may need to be propagated. Some answers may have low probability, but high cost of consequences. In
real-time applications, at some point in time an option must be chosen or rejected because it will be too
late to execute the action, a fork in the road.

• When one action is chosen, alternatives are eliminated. When time passes and it is too late for an
action, that alternative is eliminated. All interpretations are maintained as long as they are possible. At
any point in time, the is a best choice or maximum likelihood answer. If external events or new
information require immediate action, this will be the choice. Otherwise, the alternative, conflicting,
plans or interpretations can be maintained in parallel for multiple hypothesis tracking and delayed
differentiation. This is Set-Based Design in action.

SSRR 2019 November 19, 2019 19

Set-Based Design in Action – 2

• (“Multiple hypothesis tracking” and “delayed differentiation” and “Set-Based Design” are
essentially synonyms from different academic domains.) The challenge in applying SBD is
determining when to eliminate alternative interpretations.

• AEMS can be set up to mechanically execute the actions of a plan. These are simplistic systems. In
military applications there are significant unknowns and uncertainties. The AEMS has the
alternatives of

• Committing to a course of action based on the maximum likelihood interpretation, more-or-less
automatic, mechanical execution of a prior plan with local adaptation to the situation

• Taking actions to obtain information to resolve ambiguity & uncertainty before committing to a
course of action (i.e., experimentation or probing)

• Taking the immediate action or interpretation that delays commitment and maximizes the range of
future choices, or Deciding that the AEMS is unable to resolve the ambiguity, and asks the
handler/commander to decide

• These are the problems for the executive decision-making function, requiring input from the
planning function.

SSRR 2019 November 19, 2019 20

Continuing USC/UVa/NPS Research

• Maintainability and Technical Debt
―Big-Data Analysis: Software Quality Understanding by Analysis of Abundant

Data (SQUAAD)
―Successful Navy and NASA applications
―Over 1.5 billion lines of open-source code
―Developing private-cloud version for DoD applications (see poster)

• Velocity
―Parallel Agile process, code generation

• Cost estimation
―Working, calibrated COSYSMO 3.0
―Gathering data to calibrate COCOMO III
―Extensive survey and insights on cost of improving security (see poster)

SSRR 2019 November 19, 2019 21

Software Quality Understanding by Analysis
of Abundant Data (SQUAAD)

➢ An automated cloud-based infrastructure to
○ Retrieve a subject system’s information from various sources (e.g.,

commit history and issue repository).
○ Distribute hundreds of distinct revisions on multiple cloud instances,

compile each revision, and run static/dynamic programming analysis
techniques on it.

○ Collect and interpret the artifacts generated by programming analysis
techniques to extract quality attributes or calculate change.

➢ A set of statistical analysis techniques tailored for
understanding software quality evolution.
○ Technical debt, such as frequency of code smell introduction or

correlation between two quality attributes.
○ Machine learning techniques, such as clustering developers based on

their impact.
➢ An extensible web interface to illustrate software

evolution.
10-11-2018 SERC; USC 21

SSRR 2019 November 19, 2019 22

A Recent Experiment

10-11-2018 SERC; USC 22

SSRR 2019 November 19, 2019 23

Evolution of a Single Quality Attribute

➢ How a single quality
attribute evolves.

➢ Two metrics
○ Size (top)
○ Code Smells

(bottom)
➢ One project
➢ 9 years

10-11-2018 SERC; USC 23

SSRR 2019 November 19, 2019 24

Get to market faster without sacrificing quality

• 3 phases: Proof of concept, MVP, Initial Release
―Each phase approximately a month long
―Proof of concept uses prototyping to discover

requirements, reduce risk
―MVP uses UML modeling, details sunny/rainy day

scenarios, reduce technical debt
―Initial Release focuses on acceptance testing,

performance tuning, optimization, reduce hotfixes

SSRR 2019 November 19, 2019 25

Does it work?

• Four test projects involving around 200 graduate students
―Current status

―2014-2015 Location Based Advertising (75 students)
o Implemented commercially; discontinued due to low sales

―2015 Picture Sharing (12 students)
o Experiment comparison with Architected Agile project
o PA project faster, less effort; comparable performance

―2016-2018 CarmaCam (75 students)
o In LA-Metro experimental use for bus-lane monitoring
o Several additional organizations, applications interested

―2017-2018 TikiMan Go Game project (25 students)
o Being prepared for commercial application

SSRR 2019 November 19, 2019 26

Database access code doesn’t get written manually

in round numbers this might be 20-40% of your code

	Systems Qualities Ontology, Tradespace�and Affordability
	Outline
	Slide Number 3
	Proliferation of Definitions: Resilience
	Slide Number 5
	Example of SQ Value Conflicts: Security IPT
	Example of Current Practice
	Need for and Nature of SQs Ontology�
	Nature of an ontology; choice of IDEF5 structure�
	Current SERC SQs Ontology
	Stakeholder value-based, means-ends hierarchy�
	Dependability, Changeability, and Resilience
	Outline
	AFIT-NPS Contributions
	Georgia Tech Contributions
	MIT Contributions
	Penn State Contributions
	Wayne State Contributions
	Set-Based Design in Action – 2�
	Continuing USC/UVa/NPS Research��
	Software Quality Understanding by Analysis of Abundant Data (SQUAAD)
	A Recent Experiment
	Evolution of a Single Quality Attribute
	Get to market faster without sacrificing quality�
	Does it work?
	Database access code doesn’t get written manually

