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Presenter
Presentation Notes
Self-introduction.

The topic of my PhD research, and the topic of this talk, is system design as a mechanism for generalization. I will be discussing relationships between systems theory and machine learning, and exploring a case study in transfer learning where resulting concepts are applied.

This research is motivated by a desire to contribute to the development of a principled discipline of AI systems engineering.

I am working on developing high-level mathematically-grounded systems engineering methodologies for people who want to put learning algorithms in their systems, and ensure that they can make changes to their systems and still have component learning algorithms that can function properly.
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Executive Summary

• I am studying how system design can be used as a mechanism for 
the generalization of learning systems.

• I am taking a systems approach to machine learning by:
1. Using systems theory as a mathematical superstructure for learning, 

specifically theory on input-output systems
2. Extending the boundary of the system not just around the algorithm and 

data, but to the system within which the learner operates
3. Eliciting trade-offs wherein stakeholder values can select an operating 

point, instead of presupposing values and metrics

• We show how systems theory connects to learning theory, and 
how systems trade-offs can be elicited in applied machine 
learning

Presenter
Presentation Notes
I am studying how system design can be used as a mechanism for the generalization of learning systems. By generalization, we mean that the learning system can perform its functions outside of its training environment, in operational environments that vary between instances of systems, and evolve over time.

I am taking a systems approach to machine learning by:
Using systems theory as a mathematical superstructure for learning, specifically theory on input-output systems. I am studying how the mathematical structure of learning processes relate to mathematical systems theory.
Extending the boundary of the system not just around the algorithm and data, but to the system within which the learner operates.
Eliciting trade-offs wherein stakeholder values can select an operating point, instead of presupposing values and metrics.

In this talk, I will show how systems theory connects to learning theory, and how systems trade-offs can be elicited in applied machine learning.
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Contents

1. Systems Theory
― Introduction
― Connecting Systems Theory to Learning Theory
― How System Design Emerges as a Mechanism for Generalization

2. Real-World Example: Eliciting Trade-Offs in Design and 
Generalization

― Case study in design of rebuild procedure for machinery

3. Mathematical Framework for Understanding System and 
Algorithm Design for Generalization

4. Closing Remarks

Presenter
Presentation Notes
I want to briefly go over the structure of the talk today. First I will introduce systems theory, connect it to learning theory, and show how system design theoretically emerges as a mechanism for the generalization of learning algorithms. Next we’ll look at a real-world example of eliciting trade-offs between design and generalization properties, in particular, by characterizing the transfer distance/distributional change associated with a particular systems-level process. Lastly, before concluding, I’ll introduce a lightweight mathematical framework that captures our findings and perspective.



SDSF 2019 November 18, 2019 4

What is systems theory?

• “… there exists models, principals, and laws that apply to 
generalized systems or their subclasses, irrespective of their 
particular kind, the nature of their component elements, and the 
relationships of “forces” between them. It seems legitimate to ask 
for a theory, not of systems of a more or less special kind, but of 
universal principals applying to systems in general.”

- Ludwig von Bertalanffy, General System Theory (1968)

Presenter
Presentation Notes
First I want to introduce systems theory. I think the spirit of systems theory is well captured by this quote from a founding father of the field. 

–Read Quote-
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What is systems theory?

Descriptive General 
Systems Theory

Ludwig von Bertalanffy 
School of Thought

Cybernetics
Norbert Weiner 

School of Thought

Mathematical General Systems Theory
• M.D. Mesarovic (Abstract Systems Theory)

• Wayne Wymore (Model-Based Systems Engineering)

• Anatol Rapoport
• Kenneth Boulding

• Ross Ashby
• Herbert Simon

Presenter
Presentation Notes
Ludwig von Bertalanffy and his contemporaries fell short of a mathematical theory, and developed what can be though of as a descriptive general systems theory which makes heavy reliance on metaphors as the connective tissue between mathematical concepts.

Around the same time the field of cybernetics was formed. Many contributed, notably Norbert Weiner. Cybernetics focused on a general theory of control, and showed that interdisciplinary problems can be treated mathematically and demonstrated the universality of control processes in nature.

Perhaps inspired by the rigor and success of cybernetics and the vision of descriptive general systems theory, mathematical general systems theories were formulated, notably by M.D. Mesarovic and Wayne Wymore. Both theories are set-theoretic, but whereas Wymore’s is tailored towards engineering applications (in particular model-based systems engineering), Mesarovic’s is tailored towards pure mathematics. My research builds on Mesarovician systems theory.
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Levels of Abstraction

Systems Theory

Learning Theory

Machine Learning

Biology

Transfer Learning

Presenter
Presentation Notes
(Target 1:30)

I want to give some intuition about systems theory and why it might be useful for machine learning. Systems theory is often seen as a 30k-foot view of the world, and despite its mathematical formalisms, is often seen as a conceptual tool, and a hinderance, or at least an unnecessary cost, to detailed analysis. This is a reasonable criticism in traditional application areas like biology (which is at something like ground-level) where the distance between the generality of systems theory and the specificity and complexity  of biology is large. Learning theory, however, is very abstract too. And its more operational counterpart, machine learning, while it approaches the ground, is still abstract, hoping to find very general algorithms for very general learning problems.

There are many relationships between these three research areas. One can imagine many research paths. For example, relating systems concepts like interconnections of input-output systems to learning theory, or learning concepts like the capacity and flexibility of learners to systems theory.

The topic of this talk, and of my PhD research is connecting these three in the context of transfer learning. Because the connections between systems theory and these fields are largely unexplored in a mathematical context, this means doing research all along the descent path from systems theory to transfer learning. In this talk, I hope to show just how this manifests in terms of real research, by showing a little bit about how systems theory connects to learning, and then spending a good bit of time discussing a specific example in applied machine learning. In doing so, we’ll spend a little time around 30k feet, and then more at around 8k feet at the transfer learning mountain top or spire, although not much time in between.
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Mesarovician Systems Theory

• Definition. System.
A general system is a relation on non-empty (abstract) sets,

𝑆𝑆 ⊂× {𝑉𝑉𝑖𝑖: 𝑖𝑖 ∈ 𝐼𝐼}
where × is the Cartesian product, 𝐼𝐼 is the index set, and 𝑉𝑉𝑖𝑖 are the 
component sets.

• Definition. Input-Output System.
An input-output system is a general system where the component 
sets can be partitioned into an input object and output object,

𝑋𝑋 =× {𝑉𝑉𝑖𝑖: 𝑖𝑖 ∈ 𝐼𝐼𝑥𝑥} and 𝑌𝑌 = × 𝑉𝑉𝑖𝑖: 𝑖𝑖 ∈ 𝐼𝐼𝑦𝑦
where 𝐼𝐼𝑥𝑥 ∪ 𝐼𝐼𝑦𝑦 = 𝐼𝐼. Thus,

𝑆𝑆 ⊂ 𝑋𝑋 × 𝑌𝑌

Presenter
Presentation Notes
Now I want to introduce Mesarovician systems theory. It is a set-theoretic interpretation of general systems theory, where a system is defined as a relation on component sets. Theory is developed by adding additional structure to the components sets or to their elements. For example, and input-output system is one wherein the component sets can be partitioned into an input object and an output object.
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Learning as a Mesarovician Input-Output System

• Definition. Learning System.
A learning system is an input-output system,

𝑆𝑆:𝑋𝑋 → 𝑌𝑌
with a sample 𝐷𝐷 and a learning algorithm 𝐴𝐴:𝐷𝐷 → 𝑓𝑓𝜃𝜃, where 
𝑓𝑓𝜃𝜃:𝑋𝑋 → 𝑌𝑌 is a parameterized mapping.

• Definition. An Empirical Risk Minimization Learning System.
An empirical risk minimization learning system is a learning system 
where 𝐷𝐷 is an i.i.d. sample of 𝑙𝑙 input-output observations,

𝐴𝐴:𝐷𝐷 → 𝑓𝑓min𝜃𝜃 𝑅𝑅𝑒𝑒𝑒𝑒𝑒𝑒 𝜃𝜃 , where, 𝑅𝑅𝑒𝑒𝑒𝑒𝑒𝑒 𝜃𝜃 = 1
𝑙𝑙
∑𝑖𝑖=1𝑙𝑙 𝐿𝐿(𝑦𝑦𝑖𝑖 ,𝑓𝑓𝜃𝜃 𝑥𝑥𝑖𝑖 )

and 𝐿𝐿 is a loss function.

Presenter
Presentation Notes
We can now define a general learning system as an input-output system, with a sample D and a learning algorithm A from the sample D to a parameterized map f from input X to output Y. We can validate this definition of learning as being general by showing that empirical risk minimization, a core learning framework of statistical learning theory, is a special case of our formulation. In particular, ERM adds constraints on the sample D, that is must be independent and identically distributed, and on the selection of theta, that is selected by minimizing a loss function over the sample.

Thus we can see how we step down from a general system, to an input-output system, to a learning system, to an empirical risk minimization learning system. This is the spirit of the formalization approach, wherein you add assumptions in the order of their generality.
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Systems Theoretic Perspective on Transfer Learning

• By treating learning as an input-output system, learning problems 
can be straightforwardly embedded into their systems context

• Transfer learning is “the ability of a system to recognize and apply 
knowledge and skills learned in previous tasks to novel tasks” 
(DARPA BAA 05-29) .

Cody, Adams, & Beling. “A Systems Theoretic Approach to Transfer Learning.” IEEE SYSCON 2019.

Presenter
Presentation Notes
By treating learning as an input-output system, learning problems can be straightforwardly embedded into their systems context. My co-authors and I showed this explicitly in the case of transfer learning in an IEEE Systems Conference paper last spring. Back in 2005 DARPA defined transfer learning as “the ability of a system to recognize and apply knowledge and skills learned in previous tasks to novel tasks.”

So, for example, consider three input-output learning systems. In traditional machine learning, all three operate individually, as in the right-most diagram. The machine learning interpretation of transfer learning labels two input-output learning systems as sources, and the third as a target, and transfers knowledge in terms of data, parameters, and features from the sources to the target. Note, the machine learning approach draws the system boundary strictly around the algorithm. The systems theoretic approach expands the transfer learning formulation to also consider the systems to which the input-output learning systems are connected.

It is under this formulation, one that connects learning algorithms to their systems, that system design emerges as a mechanism for generalization. As shown here, clearly the system has an influence over the learner, and to the extent system design influences the system, properties of the learner like generalization can be influenced by system design. 

We will now look at an application in actuator health monitoring.
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Actuator Health Monitoring

• Learning algorithms are used to predict current 
and future health states of actuators

• Actuators have similar underlying physics, but 
physical and functional differences exist 
between actuators and over time

• For example, actuators change between 
rebuilds.

System Model
Maintenance 

Decision 
Process

Data Health 
Prediction

Maintenance Decision

Presenter
Presentation Notes
Learning algorithms are used to predict current and future health states of actuators. Despite some universal similarities, actuators have nuanced, and sometimes pronounced, differences. We will consider how actuators, as represented by a set of sensor readings, can change after a rebuild process, and how robustness to this change is necessary for the generalization of a learning algorithm over its lifecycle.

To study this problem, we collected healthy and damaged data from an actuator using a test bed, deconstructed and rebuilt the actuator, and recollected data.
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Actuator Health Monitoring

• The transfer learning problem…

How do we transfer knowledge between actuators to make learning 
easier/feasible while accounting for individual differences?

• The machine learning approach…

Statistically relate source and target actuators by using selection, 
weighing, and transformation of data, features, and parameters.

• The systems design approach…

Use systems knowledge to understand and design the cyber-
physical nature of the distributional change between actuators. 

Presenter
Presentation Notes
The transfer learning problem is how do we transfer knowledge between actuators to make learning easier/feasible while accounting for individual differences.

Transfer learning makes the problem easier by providing an initial understanding of system behavior while samples are accrued in the target system, and it makes the problem feasible, in this case, by transferring knowledge about unseen, and, for that matter, probably never-to-be-seen, damage classes. That is, transfer learning allows us to incorporate knowledge about what the damage class may look like in the new actuator, even though we will never see an example of the damage class in the new actuator.

The machine learning approach to transfer learning is to statistically relate the source and target actuators to align their joint distributions. This involves selecting, weighing, and transforming data, features, and parameters.

The system design approach, which brings into consideration the system within which the learning problem is embedded, uses systems knowledge to understand and design the cyber-physical nature of the distributional change between actuators. To do so, we’ll explicitly characterize the distributional change as a way of establishing a mechanism for relating the transfer distance or transferability of knowledge across a rebuild procedure to the various systems-level aspects of designing a rebuild procedure. In doing so, we will have demonstrated how system design is a mechanism for generalization of learning algorithms.
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Probabilistic Models of Behavior

• We use probabilistic models to understand the distributional 
change associated with a rebuild process

𝑝𝑝(𝑋𝑋 = 𝑥𝑥|𝑌𝑌 = ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒) 𝑝𝑝(𝑋𝑋 = 𝑥𝑥|𝑌𝑌 = 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑)

Presenter
Presentation Notes
Our data contains temperature, pressure, angular, and acceleration features. We probabilistically model the data using Gaussian distributions on the first two principal components of the data, that is, we model on a dimensionally reduced representation of the data.

Now, a purely machine learning or algorithmic approach wouldn’t bother to consider these explicit changes. However, in order to characterize the distributional change associated with a rebuild process (as opposed to simply optimize an algorithm for it) it makes sense to take the joint distributions apart. We do this by modeling the data after conditioning on a binary health state.

On the right, is the healthy data and the left the damaged data. The source, pre-rebuild actuator is red, and the target, post-rebuild actuator is blue. The data is modeled using a mixture of two Gaussian distributions, and the Gaussian distributions are plotted as ellipses with each ellipse corresponding to a standard deviation away from the mean. The data shows that the healthy distribution are very similar, whereas the damaged distribution is much wider after the rebuild process.
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Probabilistic Models of Behavior

• Using these, and a prior probability 𝑃𝑃 𝑌𝑌 = 𝑦𝑦 , we can construct:

𝑝𝑝 𝑋𝑋 = 𝑥𝑥 = �
𝑦𝑦

𝑃𝑃 𝑌𝑌 = 𝑦𝑦 𝑝𝑝(𝑋𝑋 = 𝑥𝑥|𝑌𝑌 = 𝑦𝑦)

• And using Bayes Theorem:

𝑃𝑃 Y = y X = x =
𝑝𝑝 𝑋𝑋 = 𝑥𝑥 𝑌𝑌 = 𝑦𝑦 𝑃𝑃(𝑌𝑌 = 𝑦𝑦)

𝑝𝑝(𝑋𝑋 = 𝑥𝑥)

𝑝𝑝(𝑋𝑋 = 𝑥𝑥|𝑌𝑌 = ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒) 𝑝𝑝(𝑋𝑋 = 𝑥𝑥|𝑌𝑌 = 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑)

Presenter
Presentation Notes
Using these distributions, and a prior probability on the class, we can construct a marginal distribution of X, and using Bayes Theorem, a posterior probability of Y|X. Then, we can use metrics to quantify the distributional divergence.
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Characterizing Transfer Distance/Transferability

𝑝𝑝(𝑋𝑋 = 𝑥𝑥) 𝑝𝑝(𝑌𝑌 = ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒|𝑋𝑋 = 𝑥𝑥)

Distribution Hellinger Distance

𝑝𝑝(𝑋𝑋 = 𝑥𝑥|𝑌𝑌 = ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒) 0.23

𝑝𝑝(𝑋𝑋 = 𝑥𝑥|𝑌𝑌 = 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑) 0.55

𝑝𝑝(𝑋𝑋 = 𝑥𝑥) 0.41

𝑝𝑝(𝑌𝑌 = ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒|𝑋𝑋 = 𝑥𝑥) 0.27

Presenter
Presentation Notes
The marginal and posterior distributions are represented on the right and left plots respectively. Below is a table of the Hellinger distance between the source and target actuators. The Hellinger distance is a probability-version of a Euclidean distance, and is bounded from 0 to 1. In can be loosely thought of as how much the distributions overlap in probability space, where 0 is perfect overlap, and 1 is no overlap.

The distances confirm our visual observation that the healthy distributions are similar, where as the damage distributions are very different. This marginal distributions difference is heavily influenced by the prior selection, and is nearly a prior weighting of the conditional distribution’s distances. The posterior distribution is less different, suggesting that even though the sensor readings may change (have a ‘probability overlap’ of only 0.41) the prediction problem changes much less (0.27).
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Trade-Offs: Transfer Distance and Rebuild Procedure 

• This characterization specifies a family of distributions 

𝑝𝑝(𝑋𝑋 = 𝑥𝑥|𝑌𝑌 = ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒) 𝑝𝑝(𝑋𝑋 = 𝑥𝑥|𝑌𝑌 = 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑)

• Design of the rebuild procedure influences this family, 
determining the potential non-stationarities the learning system 
may face, and thus, the generalization problem faced by the 
learning system.

Presenter
Presentation Notes
If you accept these distance calculations as characterizing distributional changes associated with the rebuild process, than the rebuild process is expected to generate distributional changes with identical characteristics, similar to those in the plots below. The plots show hypothetical healthy and damaged data after the rebuild process.

Our learning system’s robustness to these changes determines its ability to generalize over its lifecycle. While algorithm design plays an important role in determining generalization, the underlying dynamics of the joint distribution set the difficulty of the generalization problem the algorithm design must handle.

For example, lets consider that this rebuild process we done with care, but not tediously. If the tensions of the fasteners of the pre-rebuild actuator, for example, were measured and replicated during the rebuild, then we would expect the distributions to be much closer together. Similarly, if the rebuild was done haphazardly we would expect a larger transfer distance, and, accordingly, more difficult generalization problem.

The takeaway is this: design of the rebuild procedure influences this family, determining the potential non-stationarities the learning system may face, and thus, the generalization problem faced by the learning system.
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Towards a Mathematical Framework

Recall, a learning algorithm 𝐴𝐴 is a map,

𝐴𝐴:𝐷𝐷 → 𝑓𝑓𝜃𝜃 , 𝑓𝑓𝜃𝜃:𝑋𝑋 → 𝑌𝑌.

Given an evaluation function, 𝑣𝑣: 𝑓𝑓𝜃𝜃 → ℝ , and a real threshold 𝜖𝜖, we 
are interested in identifying the neighborhood,

𝑁𝑁 = {𝑃𝑃(𝑋𝑋,𝑌𝑌)|𝑣𝑣 𝑓𝑓𝜃𝜃 ≥ 𝜖𝜖}

System behavior is captured by the random process,
𝑅𝑅 𝑋𝑋,𝑌𝑌 = {𝑃𝑃𝑡𝑡(𝑋𝑋,𝑌𝑌)|𝑡𝑡 = 1, … ,𝑇𝑇}

Under this model of learning, system design influences 
generalization through influence over 𝑅𝑅 𝑋𝑋,𝑌𝑌 . 

In other words, generalization is both a systems and algorithm 
design problem.
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Synopsis

We showed that:

1. Systems theory is a superstructure for learning theory that can 
be used to mathematically connect learning algorithms to the 
systems within which they operate

2. Under this framework, system design emerges as an important 
component in the generalization of learning algorithms over 
system lifecycles
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Closing Thoughts

• Mathematical systems theory offers a research path towards 
systems engineering principles for learning algorithms

• This sort of research is dependent on access to systems and 
testbeds; data sets alone are insufficient

• General, systems-independent constraints on the use of learning 
algorithms are important, but limited; properties of learning 
systems are tied to both systems and learning theoretic 
properties

Presenter
Presentation Notes
Mathematical systems theory offers an research path towards systems engineering principles for learning algorithms. Much of systems engineering, particularly related to learning algorithms, will have to rely on heuristics and empiricism. This line of research can help expand the extent to which such principles are mathematically grounded.

This sort of research is dependent on access to systems and testbeds; data sets alone are insufficient. We can optimize for a data set, but the types of research we are seeking require poking, prodding, and understanding a real system with real stakeholders where we can develop methodologies for linking systems-level and interdisciplinary concerns to the machine learning problem.

Third I want to make the point about constraints vs. design, and the limits of taking a purely learning theoretic approach to the engineering of systems with learning algorithms for safety, security, and lifecycle concerns; while constraints are important, having a methodology for eliciting trade-offs is more powerful; for example, in the actuator case study, if we restricted ourselves to stationary processes, we would ne use learning algorithms for health monitoring; instead, if we consider the amount of non-stationarity, what we must pay in terms of systems costs to achieve a certain degree of non-stationarity, and the amount of non-stationarity we can algorithmically handle, we arrive at a deeper understanding of the trade-offs and risks (lifecycle, safety, or otherwise) associated with using a learning algorithm to fulfill a particular function.
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Thank you!
Questions?

Tyler Cody – tmc4dk@virginia.edu

Peter Beling – pb3a@virginia.edu
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