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Motivation

•Artificial intelligence (AI) and machine learning (ML) recognized as 
enablers of autonomy
―Susceptible to a variety of failures and adversarial attacks
―Pressing need to understand how ML capabilities can be incorporated into 

existing system engineering processes

•Provide Test & Evaluation community with familiar framework in 
which to assess autonomous systems

•Facilitate effective communication among stakeholders
―System engineers, advanced algorithm designers, testers, leadership
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Relationship of machine learning to reliability engineering

•Machine learning
―Typically resides in software
o Software reliability problem

―Often characterized by perceive, decide, execute loop
―Resides in software architecture with traditional software components
oNecessitates test of 
―Traditional and ML components as well as interactions

o Increases complexity and need for realism in
―Hardware/software reliability, architecture-based software reliability, and software 

reliability growth models
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Reliability growth modeling

• Accuracy - (Correct predictions)/(predictions attempted)

Appropriate for classification algorithms that may indirectly inform autonomy
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Probably Approximately Correct (PAC) learning framework

• Rich theoretical framework overshadowed by recent empirical success

• Defines class of learnable concepts in terms of sample size

• Problem is PAC-learnable if there is an algorithm with 𝜀𝜀 > 0, 𝛿𝛿 > 0
Pr 𝑅𝑅 𝑚𝑚 > 1 − 𝜀𝜀 ≥ 1 − 𝛿𝛿

―𝑅𝑅 ⋅ - Reliability of fitted model
―𝑚𝑚 – sample size (polynomial in 1/𝜀𝜀, 1/𝛿𝛿, cost of representing inputs, and size of concept to be learned)
― 1 − 𝛿𝛿 - Confidence

• Efficiently PAC-learnable also runs in polynomial time

Can inform feasibility of attaining desired accuracy, including cost of data
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Reliability Engineering

• Like other statistical models, machine learning prone to overfitting

• Model selection 
―Attempts to reduce error, decomposed into estimation and approximation error 
―Estimation error 
o Function of model fit

―Approximation error 
o Cannot be estimated
o Describes how well model fit approximates Bayes error or average noise

―Empirical risk minimization
o Seeks to minimize error on training sample

―Tradeoff between estimation and approximation error required
o Related to classical dilemma of model complexity vs. predictive goodness of fit
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Impact of model fitting on loss in training and testing data

Minimizing loss on training data overfits model
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Regularization

• Method to avoid overfitting
𝑅𝑅 ℎ = 𝐿𝐿 ℎ + 𝜆𝜆 ∗ 𝐶𝐶 ℎ

―ℎ - Hypothesis (fitted model)
―𝐿𝐿 - Empirical loss
―𝜆𝜆 > 0 - Penalty applied to complexity function
―𝐶𝐶(ℎ) – Complexity of hypothesis ℎ
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Cross-validation, fault tolerance, and bootstrapping

• K-fold cross-validation
―Used when data too small to reserve subset for validation
―Uses data for both training and testing
―Divides dataset of size 𝑚𝑚 into 𝑛𝑛 subsets of equal size
―Learning algorithm trained on (𝑛𝑛 − 1) subsets and validated with remaining subset
―Applied iteratively to improve a model’s predictive accuracy 
―Employed in conjunction with regularization

• Fault-tolerance (ensemble learning)
―Includes both unweighted and variety of weighted majority voting techniques
―Bootstrapping popular technique to avoid overfitting in context of ensemble classifiers
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Input-domain view of testing machine learning algorithm

Related to concept of coverage from traditional software testing as well as model 
complexity in machine learning
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Failure modes, effects and criticality analysis (FMECA)

• How system or subsystem fails, consequences, and severity

• Coupled with fault tree analysis to characterize logical structure of failure propagation, 
quantify risk, and prioritize mitigation

• Autonomous vehicle example
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Consequences of misclassification can vary



SDSF 2019 November 18, 2019 13

Cost sensitive learning

• Trains classifier in light of cost
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―𝑛𝑛 – Number of classes
o Class 0 corresponds to ‘nothing’

―𝑐𝑐𝑖𝑖𝑗𝑗 - Cost of classifying object of class 𝑖𝑖 in class 𝑗𝑗
―𝑝𝑝𝑖𝑖𝑗𝑗 - Probability of classifying object of class 𝑖𝑖 in class 𝑗𝑗

• Data-based method (Class rebalancing)
―Under samples more prevalent data and oversamples underrepresented data

• Algorithmic methods
―Modify learning process to improve sensitivity to catastrophic misclassifications
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Conclusion and Future Work

• Identified relationships between
―Machine learning and system and software reliability engineering

• Mapped machine learning methods to traditional reliability concepts
―Reliability growth modeling
―Reliability engineering
―Fault tolerance
―Software testing
―Failure modes, and effects criticality analysis

• Intended to assist individuals familiar with reliability engineering communicate 
with machine learning experts to support engineering of autonomous systems 
incorporating machine learning
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Future Research

•Further elaborate connections between reliability 
engineering and machine learning methods

•Explore
―Relationship between adversarial machine learning and failure 

modes, effects and criticality analysis
―Application of techniques from machine learning to support 

reliability engineering
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