

Building the Case for Secure MOSA Using Systems Thinking Methodologies

Sponsor: OUSD(R&E) | CCDC

By

Ms. Giselle M. Bonilla-Ortiz 7th Annual SERC Doctoral Students Forum November 18, 2019 FHI 360 CONFERENCE CENTER 1825 Connecticut Avenue NW, 8th Floor Washington, DC 20009

www.sercuarc.org

- Introduction
- Perspectives: Identifying Secure MOSA Stakeholders
- Secure MOSA System Boundary
- Inputs to Secure MOSA
- Value Adding Processes: Identifying the benefits of a Secure MOSA
- Secure MOSA Shaping Forces
- Telling the Story: Visualizing Secure MOSA Relationships Using Systemigrams
- Conclusion
- Ongoing Research
- References

- Modular Open Systems Approach (MOSA) is the Department of Defense (DoD) method to designing composable systems that follow open standards and can be acquired from independent vendors
- Equally as important is the DoD's desire to mitigate the risks of losing critical program information and to maintain operability of their systems during potential cybersecurity attacks
- This presentation introduces the concept of a Secure MOSA and utilizes Systems Thinking methodologies to understand the complex relationships contained in this system

Perspectives: Identifying Secure MOSA Stakeholders

Government

- Congress
- Warfighter
- Department of Defense
 - OSD and DASD (SE)
 - Program Management Office
 - Acquisition Officers
 - Logistics
 - Systems Engineers
 - Systems Security Engineers
 - Contracting Officers
 - Chief Development Testers
 - ATEA
- Intelligence and Counterintelligence
- JAPEC
- JFAC
- NIST

Industry

- Contractors
 - Program Managers
 - Systems Engineers
 - Systems Security Engineers
 - Training
 - Security
 - Production and Operations
- Sub-contractors / suppliers

Other organizations

- Open Standards
- Consortiums
- Conformance and Certification Agencies
- Adversaries and Exploiters

- Determine the system boundary to scope analysis
- Entities outside the boundary influence decisions and design – see inputs, next slide
 - These relationships may cross the boundary

Inputs to Secure MOSA

- Inputs to Secure MOSA impact decisions throughout the system's lifecycle
- Known or suspected exploiter attacks will influence security capabilities design
- Funding received impacts scope a program can undertake
- NIST and Consortiums provide guidance and best practices
- Requirements are driven by warfighter needs

- MOSA and SSE have well understood benefits
- Benefits of MOSA: enhanced competition, innovation, cost savings/avoidance, improved interoperability
- Benefits of SSE: threat mitigation, address system loss scenarios, protection of capabilities that enhance warfighter advantage

Rapid upgrades of compromised modules	Securing IP / CPI while still improving interoperability
Design for Authenticity	Rapid upgrades of modular security components

 Establishing the value of SSE incorporated into MOSA to determine benefits

Secure MOSA Shaping Forces

Forces that have shaped need for MOSA Forces shaping the need for Secure MOSA	 The need for Secure MOSA is shaped by both the need for MOSA and SSE 						
have shaped need for SSE	Shaping Forces						
 SSE rigor will be required on all MOSA components to maintain and/or enhance security 	MOSA			SSE			Secure MOSA
	Increasing Costs	Schedule Delays	Obsolete Systems	Supply Chain Risks	Inter- connectivity	Growing Threat Space	SSE Rigor Needed on all Components

Telling the Story: Secure MOSA Relationships

 Used Systemigram to analyze and visualize relationships between stakeholders and components within the Secure MOSA system

- MOSA, if adopted effectively by the DoD and its contractors, will result in significant cost savings, rapid upgrades and greater advantage for the warfighter
- Ensuring that Program Protection and Systems Security Engineering are incorporated into the MOSA lifecycle will be paramount in the approach's success and maintaining technological advantage over adversaries
- Systems Thinking provides excellent tools that can help gain a deeper understanding of the problem scope that is incorporating SSE practices into MOSA

- Leveraging Cyber-Physical Systems (CPS) to Identify Security Patterns for Secure Modular Open Systems Approach (MOSA) Designs
- Using this research to expand on the value adding processes identified:
 - -Rapid upgrades of compromised modules
 - —Securing Intellectual Property (IP)/CPI while still improving interoperability
 - -Design for Authenticity
 - -Rapid upgrades of modular security components
- Identifying parallels and commonality, security patterns, protection approaches

- Openness in military systems part 1: Analysis & applications. MILCOM 2012 2012 IEEE Military Communications Conference, MILITARY COMMUNICATIONS CONFERENCE, 2012 MILCOM 2012. 1, 2012. ISSN: 978-1-4673-1729-0.
- Defense Acquisition Guidebook, Chapter 9: Program Protection, Version 5
- N. Davendralingam, C. Guariniello, S. Tamaskar, D. DeLaurentis, and M. Kerman, "Modularity research to guide MOSA implementation," The Journal of Defense Modeling and Simulation: Applications, Methodology, Technology, Jan. 2018.)
- K. R. Hibbert, "A need for systems architecture approach for next generation mine warfare capability," Naval Postgraduate School, Monterrey, California, 2006.
- P. Zimmerman, M. Ofori, D. Barrett, J. Soler, and A. Harriman, "Considerations and examples of a modular open systems approach in defense systems," Journal of Defense Modeling & Simulation, Apr. 2018.
- http://acqnotes.com/acqnote/careerfields/system-security-engineering
- K. Baldwin, J. Dahmann, and J. Goodnight, "Systems of Systems and Security: A Defense Perspective," INSIGHT, vol. 14, no. 2, pp. 11– 14, Jul. 2011.
- United States Government Accountability Office (GAO), "DOD Efforts to Adopt Open Systems for Its Unmanned Aircraft Systems Have Progressed Slowly", July 2013.
- R. Harrison, "Future-Proof Today's Test Systems to Handle Tomorrow's Devices," EE: Evaluation Engineering, vol. 51, no. 9, pp. 54– 54, Sep. 2012.
- <u>https://www.afmc.af.mil/News/Article-Display/Article/1752516/services-improve-interoperability-through-common-data-standards/</u>
- K. Baldwin, P. R. Popick, J. F. Miller, and J. Goodnight, "The United States Department of Defense revitalization of system security engineering through program protection," in 2012 IEEE International Systems Conference SysCon 2012, 2012, pp. 1–7.
- J. Dahmann, G. Rebovich, M. McEvilley, and G. Turner, "Security engineering in a system of systems environment," in 2013 IEEE International Systems Conference (SysCon), 2013, pp. 364–369.
- Boardman, J. and B. Sauser, Systems Thinking: Coping with 21st Century Problems. 2008, Boca Raton, FL: Taylor & Francis / CRC Press.