
Contacts/References

Future Research

SERC Research Review, November 18 – 19, 2019

Research Task / Overview Goals & Objectives

Data & Analysis

Methodology

Software Quality Understanding by Analysis of Abundant Data
(SQUAAD):

Towards Better Understanding of Life Cycle Software Qualities
Pooyan Behnamghader and Barry Boehm

An approach to analyze software quality
before and after each change.
An automated infrastructure to
• Retrieve a subject system’s information

from various sources (e.g., commit
history and issue repository).

• Distribute hundreds of relevant
revisions on multiple cloud instances,
efficiently compile each revision, and
run static/dynamic programming
analysis techniques on it.

• Collect and interpret the artifacts
generated by programming analysis
techniques to extract quality attributes
or calculate change.

A set of statistical analysis techniques
tailored for understanding software
quality evolution.
• Simple statistics, such as frequency of

code smell introduction or correlation
between two quality attributes.

• Machine learning techniques, such as
clustering developers based on their
impact.

Commit History Over a Period of 9 Years

C
od

e
Sm

el
ls

Si
ze

 (S
LO

C
)

SQUAAD
Orchestration

Server
Software

Repository

Software
RevisionSoftware

RevisionSoftware
Revision

2

Execution Host for Static/Dynamic Program Analysis

Public Cloud

Analysis
Config

1

Analysis
Result

3

Software Quality
Database

Software
Evolution

Data

4

Data Analytics

Software
Evolution

Data

5

Pooyan Behnamghader, pbehnamg@usc.edu
Barry Boehm, boehm@usc.edu
USC Center for Systems and Software Engineer
B. Boehm and P. Behnamghader. Anticipatory
development processes for reducing total ownership costs
and schedules. Systems Engineering, 22(5):401–410, 2019.

• Implementing a private cloud solution
for close-source applications.

• Extending SQUAAD to include more
Static Application Security Testing
(SAST) COTS.

Experiment’s Scale

Org. Timespan Sys. Commits LOC (MS)

Apache 01/2002-
02/2018 38 22627 734

Google 08/2008-
01/2018 18 11527 760

Netflix 05/2011-
01/2018 12 3684 37

Total 17 years 68 37838 1.5 Billion

Many ground systems operate for long periods of time, and
will have large amounts of software. Even with extensive pre-
launch testing, their software will have defects and
vulnerabilities that need to be fixed, and further defects and
vulnerabilities that emerge as the software evolves. Studies
of long-lived software have found that the later the defects
and vulnerabilities are found and fixed, the more expensive
will be the fix. This phenomenon is now known as technical
debt, as the increased cost of making the fix is similar to
paying interest on the cost of the fix. Further, delays in living
with defective software will have serious impacts on the
ground systems’ operational capabilities. Thus, investments
in methods, processes, and tools for performing large-scale
data analytics of their ground system software, or other
software of interest will have large returns on investment. A
recent study by the Consortium for Software Quality
estimated that the cost of technical debt of software
worldwide is roughly $2.8 trillion.

• Enabling large-scale data analysis on
large-scale software technical debt.

• Understanding how software and its
technical debt evolves.

• Analyzing the impact of each developer
and event on software quality.

• Reducing total ownership costs and
schedules.

mailto:pbehnamg@usc.edu
mailto:boehm@usc.edu

