
Contacts/References

SERC Doctoral Students Forum and Sponsor Research Review, November 7 & 8, 2018

Research Task / Overview Goals & Objectives

Data & Analysis

Methodology

A Scalable and Efficient Approach
for Compiling Commit History

Pooyan Behnamghader and Barry Boehm
USC Center for Systems and Software Engineering

Two approaches for
analyzing commit
history:
 Measure quality

metrics only in
every commit’s
impacted files.

 Compile and
analyze the
whole software
after every
commit.

Approach:
 We focus on an evolving module (target).
 We compile and analyze only the distinct revisions

of the target and omit other modules to prevent
their errors from breaking the build.

 We reach the maximum compilation over commit
history for the target module and identify all
commits that are uncompilable as a result of a
developer’s fault during development.

Algorithms:
 Identifying distinct revisions of the target and

ancestry relationships between them.
 Distributing the analysis over the cloud.
 Reaching the maximum compilation and

identifying the reason(s) for uncompilability.
Evaluation:
 We conduct a large-scale empirical study on

37838 distinct revisions of the core module of 68
systems across Apache, Google, and Netflix to
assess their compilability.

Revision 2 Revision 3

M1

3

M3

6

7

M2

4

9

Revision 1

M1

1

3

M3

6

7

8

M2

5

M1

1

2

3

M2

9

5

M3

6

7

8

5

8

Legend

Compilable

2 2

44

Uncompilabl
e

Software

Module

File

Change

• R2 is the only 
compilable 
revision of the 
software

• R1/3 is 
uncompilable 
because of errors 
in File 3/8

• All three revisions 
of M2 are 
compilable.

A Single Compile Error Breaks the Build 
for the Whole Software.

Although the Whole Puzzle Is Incomplete Because of One Missing 
Piece, the Main Part(s) Are Complete and Understandable.

Compilation over commit history:
 Uncompilable code is a symptom of careless

development.
 Some static, and all dynamic program analysis

techniques depend on byte-code availability.

We intend to demonstrate if analyzing changes in a
module (instead of the whole software) results in
achieving a high compilation ratio and a better
understanding of software quality evolution.

Focusing on impacted files is not suitable for
compilation, and compiling the whole software after
every commit results in a low compilation ratio.

We Achieve High Compilation Ratios.

Pooyan Behnamghader: pbehnamg@usc.edu, Barry Boehm: boehm@usc.edu

Pooyan Behnamghader, Patavee Meemeng, Iordanis Fostiropoulos, Di Huang, Kamonphop
Srisopha, and Barry Boehm. 2018. A scalable and efficient approach for compiling and
analyzing commit history. In Proceedings of the 12th ACM/IEEE International Symposium on
Empirical Software Engineering and Measurement (ESEM '18). ACM, New York, NY, USA,
Article 27, 10 pages.

Bytecode analysis over commit history:
 Architecture evolution.
 Code coverage evolution.
Uncompilability over commit history:
 Taxonomy on why developers commit broken code.

How can we achieve a high compilation ratio?

 Average system compilability ratio: 98.4% for
Apache, 98.1% for Google, 93.9% for Netflix.

 Commit compilability ratio: 98.4% for Apache,
99.0% for Google, 94.3% for Netflix.

Analysis of uncompilability:
 We identify 303 sequences of uncompiled

commits and study their characteristics (i.e.,
length, and duration, and number of developers).

 We create a model to predict uncompilability
based on commit metadata (i.e., time, message,
and author) with an F1-score of 0.89 and an AUC
of 0.96.

Future Research

mailto:pbehnamg@usc.edu
mailto:boehm@usc.edu

