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Research Task / Overview

Compilation over commit history:

» Uncompilable code is a symptom of careless
development.

» Some static, and all dynamic program analysis
techniques depend on byte-code availability.
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Focusing on impacted files is not suitable for
compilation, and compiling the whole software after
every commit results in a low compilation ratio.

How can we achieve a high compilation ratio?

Data & Analysis

We Achieve High Compilation Ratios.
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» Average system compilability ratio: 98.4% for
Apache, 98.1% for Google, 93.9% for Netflix.

» Commit compilability ratio: 98.4% for Apache,
99.0% for Google, 94.3% for Netflix.

Analysis of uncompilability:

» We identify 303 sequences of uncompiled
commits and study their characteristics (i.e.,
length, and duration, and number of developers).

» We create a model to predict uncompilability
based on commit metadata (i.e., time, message,
and author) with an Fl-score of 0.89 and an AUC
of 0.96.
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Goals & Objectives

We intend to demonstrate if analyzing changes in a
module (instead of the whole software) results in
achieving a high compilation ratio and a better
understanding of software quality evolution.

Although the Whole Puzzle Is Incomplete Because of One Missing
Piece, the Main Part(s) Are Complete and Understandable.
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Approach:

» We focus on an evolving module (target).

» We compile and analyze only the distinct revisions
of the target and omit other modules to prevent
their errors from breaking the build.

» We reach the maximum compilation over commit
history for the target module and identify all
commits that are uncompilable as a result of a
developer’s fault during development.

Algorithmes:

» ldentifying distinct revisions of the target and

ancestry relationships between them.

Distributing the analysis over the cloud.

Reaching the maximum compilation and

identifying the reason(s) for uncompilability.

Evaluation:

» We conduct a large-scale empirical study on
37838 distinct revisions of the core module of 68
systems across Apache, Google, and Netflix to
assess their compilability:.
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Future Research

Bytecode analysis over commit history:

» Architecture evolution.

» Code coverage evolution.

Uncompilability over commit history:

» Taxonomy on why developers commit broken code.
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