A Scalable and Efficient Approach
for Compiling Commit History

Pooyan Behnamghader and Barry Boehm
USC Center for Systems and Software Engineering

SYSTEMS
ENGINEERING

RESEARCH CENTER

Research Task / Overview

Compilation over commit history:

» Uncompilable code is a symptom of careless
development.

» Some static, and all dynamic program analysis
techniques depend on byte-code availability.

Two approaches for A Single Compile Error Breaks the Build

analyzing commit [revision1" ot Wy WM, ™

history: CNS " Compilable Module

» Measure quality () comian O
metrics only in | |(5) ; - e
every commit’s [w | Software i
impacted files. O * R2Isthe only

compilable
revision of the

» Compile and

OOEHOEOEHHOO:
GOEHOOOHOE

@ software
analyze the * R1/31s
h | f M3 uncompilable

whole software @ because of errors
in File 3/8

after every @ + All three revisions

commit. of M2 are

compilable.

N 2N NS J

Focusing on impacted files is not suitable for
compilation, and compiling the whole software after
every commit results in a low compilation ratio.

How can we achieve a high compilation ratio?

Data & Analysis

We Achieve High Compilation Ratios.

20 Apache Google M Netflix

70
60

50
40

30

20
10

N !

1 87 90 92 93
Compilation Ratio (%)

» Average system compilability ratio: 98.4% for
Apache, 98.1% for Google, 93.9% for Netflix.

» Commit compilability ratio: 98.4% for Apache,
99.0% for Google, 94.3% for Netflix.

Analysis of uncompilability:

» We identify 303 sequences of uncompiled
commits and study their characteristics (i.e.,
length, and duration, and number of developers).

» We create a model to predict uncompilability
based on commit metadata (i.e., time, message,
and author) with an Fl-score of 0.89 and an AUC
of 0.96.

Frequency (%)

98 99 100

1
04 95 96 97

Goals & Objectives

We intend to demonstrate if analyzing changes in a
module (instead of the whole software) results in
achieving a high compilation ratio and a better
understanding of software quality evolution.

Although the Whole Puzzle Is Incomplete Because of One Missing
Piece, the Main Part(s) Are Complete and Understandable.

hhhh

:

g . ' ST X s ‘ e IE PN —— ‘
- , ke N eRiCe TR i — i .
f . S —— e ¥ &R .
ot 3y -4] y 4 I 7+ . f v - Sehedd } 4
“ [b o i

v | / - e » :
P s N . e 0 . _;" e Sy g S \
Sa IR SES I, L, _ A i SRS A s §

Approach:

» We focus on an evolving module (target).

» We compile and analyze only the distinct revisions
of the target and omit other modules to prevent
their errors from breaking the build.

» We reach the maximum compilation over commit
history for the target module and identify all
commits that are uncompilable as a result of a
developer’s fault during development.

Algorithmes:

» ldentifying distinct revisions of the target and

ancestry relationships between them.

Distributing the analysis over the cloud.

Reaching the maximum compilation and

identifying the reason(s) for uncompilability.

Evaluation:

» We conduct a large-scale empirical study on
37838 distinct revisions of the core module of 68
systems across Apache, Google, and Netflix to
assess their compilability:.

>
>

Future Research

Bytecode analysis over commit history:

» Architecture evolution.

» Code coverage evolution.

Uncompilability over commit history:

» Taxonomy on why developers commit broken code.

Contacts/References

Pooyan Behnamghader: pbehnamg@usc.edu, Barry Boehm: boehm@usc.edu

Pooyan Behnamghader, Patavee Meemeng, lordanis Fostiropoulos, Di Huang, Kamonphop
Srisopha, and Barry Boehm. 2018. A scalable and efficient approach for compiling and
analyzing commit history. In Proceedings of the 12th ACM/IEEE International Symposium on
Empirical Software Engineering and Measurement (ESEM '18). ACM, New York, NY, USA,
Article 27, 10 pages.

SERC Doctoral Students Forum and Sponsor Research Review, November 7 & 8, 2018

mailto:pbehnamg@usc.edu
mailto:boehm@usc.edu

